

Operation Manual

S1 Series VFD Communication Extension Card

Communication card Safety precautions

Safety precautions

The expansion card can be installed and operated only by people who have taken part in professional training on electrical operation and safety knowledge, obtained the certification, and been familiar with all steps and requirements for installing, performing commissioning on, operating, and maintaining the device, and are capable of preventing all kinds of emergencies.

Before installing, removing, or operating the communication card, read the safety precautions described in this manual and the variable-frequency drive (VFD) operation manual carefully to ensure safe operation.

For any physical injuries or damage to the device caused due to your neglect of the safety precautions described in this manual and the VFD operation manual, our company shall not be held liable

- You need to open the housing of the VFD when installing or removing the communication
 card. Therefore, you must disconnect all power supplies of the VFD and ensure that the
 voltage inside the VFD is safe. For details, see the description in the VFD operation
 manual. Severe physical injuries or even death may be caused if you do not follow the
 instructions.
- Store the communication card in a place that is dustproof and damp-proof without electric shocks or mechanical pressure.
- The communication card is electrostatic sensitive. Take measurements to prevent electrostatic discharge when performing operations involving it.
- Tighten the screws up when installing the communication card. Ensure that it is firmly fixed and properly grounded.

Terminology and abbreviations

CAN	Controller Area Network					
СОВ	Communication object, a transmitted unit on a CAN network. Communication objects (COBs) carry data and can be transmitted through the whole network. A COB is part of a CAN message frame.					
EDS	Electronic datasheet, an ASCII file for node configuration, required when a CANopen network is configured. An EDS file contains general information about nodes and their dictionary objects (parameters).					
NMT	Network management, one of the CAN application-layer service elements in the CAN reference model. It is used for the initialization, configuration, and fault handling of a CAN network.					
Object dictionary	Stores information about all COBs identified by a device.					
PDO	Process data object, a type of COBs, used to transmit process data, such as control command, set values, state values, and actual values.					
PDOn Tx	PDO command transmitted by a slave to the master, where n refers to 1, 2, 3, 4.					
PDOn Rx	PDO command transmitted by the master and received by a slave, where n refers to 1, 2, 3, 4.					
SDO	Service data object, a type of COB, used to transmit non-time key data, such as parameter values.					
RO	Indicates read-only access.					
RW	Indicates the read and write access.					
SYNC	Indicates synchronous transmission.					
Node-ID	Node ID, that is, address of a communication card.					
0x	Indicates that a number with this prefix is a hexadecimal value, for example, 0x10 indicates the decimal value 16.					

Safety precautions

Contents

Caroty productions	
Terminology and abbreviations	ii
Contents	
Chapter 1 Product confirmation	
Chapter 2 PROFIBUS communication card	2
2.1 Overview	2
2.2 Features	2
2.3 Electrical connection	3
2.4 Bus network connection	
2.5 System configuration	6
2.6 PROFIBUS-DP communication	7
Chapter 3 CANopen communication card	18
3.1 Overview	18
3.2 Features	18
3.3 Electrical wiring	20
3.4 Terminal wiring	20
3.5 Communication	21
3.6 Process data object (PDO)	32
3.7 Monitoring process data through SDO commands	42
3.8 Baud rate and communication address setting	45
Chapter 4 BACnet MSTP communication card	48
4.1 Overview	48
4.2 Features	48
4.3 Electrical wiring	49
4.4 Terminal wiring	50
4.5 Connecting the BACnet MSTP card to the PLC	51
Chapter 5 PROFINET communication card	77
5.1 Overview	77
5.2 Features	77
5.3 Electrical wiring	79
5.4 Communication	80
Appendix A CANopen object dictionary	90
Annendix B Related function codes	97

Communication card Product confirmation

Chapter 1 Product confirmation

Check the following after receiving a communication expansion card product:

- · Whether the communication card is damaged.
- Whether the received communication card is the one you purchase according to the bar code label on the PCB.
- Whether all the following items are contained in the product package:
- One communication card, one tie wrap, one tie, one M3 screw, and one manual.
- If the communication card is damaged, a wrong model is delivered, or some items are missing, contact the supplier in a timely manner.
- Obtain the ESD file of the communication card from HITACHI. The file is named communication card model.eds.
- Confirm the environmental requirements for application.

Table 1-1 Environmental requirements

Item	Requirement
Operation temperature	-10-+50°C
Storage temperature	-20-+60°C
Relative humidity	5%–95%
Other weather conditions	No condensation, ice, rain, snow, or hail; solar radiation < 700 W/m ²
Air pressure	70-106 kPa
Vibration and impact	5.9m/s² (0.6g) at the sine vibration of 9 Hz to 200 Hz

Chapter 2 PROFIBUS communication card

2.1 Overview

S1-PB PROFIBUS communication cards are optional accessories for VFDs. They can be used to connect VFDs to PROFIBUS networks. On a PROFIBUS network, VFDs are slave devices. The following functions can be performed by using a PROFIBUS communication card:

- Transmit control commands (such as start, stop, and fault reset) to a VFD.
- Transmit speed or torque reference signals to a VFD.
- · Obtain state values and actual values from a VFD.
- Modify parameter values of a VFD.

2.2 Features

- PROFIBUS is an international open fieldbus standard that can implement data exchange between various automation components. It is widely applicable to automation in various industries, such as the manufacturing, process, building, transportation, and power industries. It provides effective solutions for implementing integrated automation and intelligentization of field devices.
- PROFIBUS consists of three mutually compatible components, namely PROFIBUS-Decentralised Peripherals (DP), PROFIBUS-Process Automation (PA), and PROFIBUS-Fieldbus Message Specification (FMS). It adopts the master-slave mode and is generally used for periodic data exchange between VFD devices. PRNV PROFIBUS-DP adapter modules support only the PROFIBUS-DP protocol.
- 3. The transmission media of a PROFIBUS field bus are twisted pairs (complying with the RS-485 standard), paired cables, or optical cables. The maximum length of a fieldbus cable must be within the range of 100 m to 1200 m, and the specific length depends on the selected transmission rate (see the chapter of "Technical Data" in the VFD manual). A maximum of 31 nodes can be connected to one PROFIBUS network segment when no repeater is used. If repeaters are used, a maximum of 127 nodes (including the repeaters and master stations) can be connected.
- 4. In PROFIBUS communication, tokens are transmitted between master stations or by master stations to slave stations. Single-master or multi-master systems are supported. The node to respond to the command of a master is selected by the master station, generally a programmable logic controller (PLC). For cyclic master-slave user data transmission and non-cyclic master-master data transmission, a master can also transmit commands to multiple nodes in broadcast mode. When the broadcast mode is adopted, the nodes do not need to transmit feedback signals to the master. On PROFIBUS

networks, nodes cannot communicate with each other.

The PROFIBUS protocol is described in details in the EN50170 standard. For more information about PROFIBUS, refer to the EN50170 standard.

2.3 Electrical connection

Node selection

The node address of a device is unique on a PROFIBUS bus. The node address is set through the function parameter P15.01, and the value ranges from 0 to 127.

Fieldbus terminator

Each fieldbus segment is configured with two bus terminators, one on each end, to prevent operation errors. Bus terminators can protect the fieldbus signal against electrical reflections. The dual in-line package (DIP) switch on the printed circuit board (PCB) of a communication card is used to connect to the fieldbus terminator. If the communication card is the last or first module on the network, the bus terminator must be set to ON. When a PROFIBUS D-sub connector with a built-in terminator is used, you must disconnect the communication card from the terminator.

2.4 Bus network connection

1. Bus communication interfaces

The most common PROFIBUS transmission mode is the shielded twisted-pair copper cable transmission, in which shielded twisted-pair copper cables (complying with the RS-485 standard) are used.

The basic characteristics of this transmission technology are described as follows:

- Network topology: Linear bus with one active fieldbus terminal resistor on each end
- Media: Shielded or unshielded twisted-pair cables, depending on the EMC environmental conditions
- Number of stations: 32 on each network segment (without repeater); a maximum of 127 (with repeaters)
- Plug connection: 9-pin D-type plug. The following figure shows the pins of the connector.

Figure 2-1 Plug of the connector

Conne	ector pin	Description
1	-	Unused
2	-	Unused
3	B-Line	Data+ (twisted-pair wire 1)
4	RTS	Transmitting requests
5	GND_BUS	Isolation ground
6	+5V BUS	Isolated 5 V DC power supply
7	-	Unused
8	A-Line	Data- (twisted-pair wire 2)
9	-	Unused
Housing	SHLD	PROFIBILS cable shielding wire

Table 2-1 Connector pins

The +5V and GND_BUS pins are used for bus terminators. Optical transceivers (RS-485) and some other devices may need to obtain external power supplies through these pins.

For some devices, the transmission direction is determined by using the RTS pin. In regular application, only the A-Line, B-Line, and SHLD pins are used.

It is recommended that you use the standard DB9 connectors manufactured by Siemens. If the communication baud rate is required to be higher than 187.5 kbps, strictly follow the wiring standards stipulated by Siemens.

Repeaters

A maximum of 32 stations (including the master station) can be connected to each fieldbus segment. If the number of stations to be connected to a fieldbus segment exceeds 32, you need to use repeaters to connect the fieldbus segments. Generally, the number of repeaters connected in series cannot exceed 3.

Note: No station address is provided for repeaters, but they are calculated as stations.

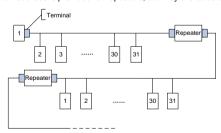


Figure 2-2 Repeaters

3 Transmission rates and maximum transmission distances.

The maximum length of a cable depends on the transmission rate. Table 2-2 describes the transmission rates and corresponding transmission distances.

Table 2-2 Transmission	rates and corresponding	transmission distances

Transmission rate (kbps)	A-type wire (m)	B-type wire (m)
9.6	1200	1200
19.2	1200	1200
93.75	1200	1200
187.5	1000	600
500	400	200
1500	200	

Table 2-3 Transmission wire parameters

Parameter	A-type wire	B-type wire
Impedance (Ω)	135–165	100-130
Capacitance of a unit length (pF/m)	< 30	< 60
Circuit resistance (Ω/km)	110	
Wire core diameter (mm)	0.64	> 0.53
Sectional area of wire core (mm²)	> 0.34	> 0.22

Besides the shielded twisted-pair copper cables, you can also use optical fibers for transmission in a PROFIBUS system. When a PROFIBUS system is applied in an environment with strong electromagnetic interference, you can use optical fiber conductors to increase the high-speed transmission distance. Two types of optical fiber conductors can be used. One is low-cost plastic fiber conductors that can be used when the transmission distance is shorter than 50 m; and the other is glass fiber conductors that can be used when the transmission distance is shorter than 1 km.

4. PROFIBUS bus connection diagram

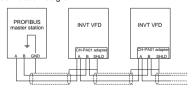


Figure 2-3 PROFIBUS bus connection

Figure 2-3 shows the terminal wiring. The cables are standard PROFIBUS cables, each consisting of a twisted pair and shielding layer. The shielding layers of PROFIBUS cables are directly grounded on all nodes. You can select a proper grounding mode based on the actual situation on site.

Note:

- When connecting the stations, ensure that the data cables are not twisted together. For systems to be used in environments with strong electromagnetic radiation, you need to use cables with shielding layers. The shielding layers can improve electromagnetic compatibility (EMC).
- 2. If shielding braid or shielding foil is used, connect the two ends of it to the protective ground and cover an area as large as possible to ensure high conductivity. In addition, data cables need to be separated from high-voltage cables.
- 3. When the data transmission rate is higher than 500 kbit/s, do not use short stub. Use the plugs available in the market. Data input and output cables can be directly connected to those plugs, and the plug of the communication card can be connected or disconnected at any time without interrupting data communication of other stations.

2.5 System configuration

1. System configuration

After the communication card is properly installed, you need to configure the master station and VFD to enable the communication between the master station and communication card.

One device description file named GSD file is required for each PROFIBUS slave station on the PROFIBUS bus. The GSD file is used to describe the characteristics of the PROFIBUS-DP device. The software we provide for users includes information about the GSD file of the VFD. You can obtain the type definition files (GSD files) of various masters from us

Parameter No.	Parameter name	Setting options		Default setting
0	Module type	Read-only		PROFIBUS-DP
1	Node address	0–99		2
			0: 9.6	
2	Baud rate setting	kbit/s	1: 19.2	6
			2: 45.45	

Table 2-4 Communication card configuration parameters

Parameter No.	Parameter name	Setting options		Default setting
			3: 93.75	
			4: 187.5	
			5: 500	
			6: 1.5	
			7: 3	
		Mbit/s	8: 6	
			9: 9	
			10: 12	
3	PZD3	0-65535		0
4	PZD4	0–65535		0
	***	0–65535		0
10	PZD12	0-65	5535	0

2. Module type

This parameter displays the model of the communication card detected by the VFD. You cannot modify the value of this parameter. If the parameter is not defined, communication between the communication card and VFD cannot be established.

3. Node address

On the PROFIBUS network, each device corresponds to one unique node address. The node address is set through P15.01.

4. GSD file

One device description file named GSD file is required for each PROFIBUS slave station on the PROFIBUS bus. The GSD file is used to describe the characteristics of the PROFIBUS-DP device. The GSD file includes all parameters defined for the device, including the supported bard rate, supported information length, input/output data amount, and definitions of diagnosis data.

You can obtain the type definition files (GSD files) of various masters from HITACHI's official website and copy the GSD files to the corresponding subdirectories on the configuration tool software. For details about the operation and how to configure the PROFIBUS system, see the instructions for the related system configuration software.

2.6 PROFIBUS-DP communication

1. PROFIBUS-DP

PROFIBUS-DP is a distributed input/output (I/O) system. It enables a master to use a large number of peripheral modules and on-site devices. Data transmission is periodic:

The master reads information input from a slave and then transmits a feedback signal to the slave

2 SAP

The PROFIBUS-DP system uses the services at the data link layer (Layer 2) through service access points (SAPs). Functions of each SAP are clearly defined. For more information about SAPs, see the related PROFIBUS master user manuals, that is, PROFIdrive—PROFIBUS models or EN50170 standards (PROFIBUS protocol) for variable-speed drives.

3. PROFIBUS-DP information frame data structure

The PROFIBUS-DP system allows fast data exchange between the master and VFD devices. For VFD devices, data is always read and written in the master/slave mode. VFDs always function as slave stations, and one address is clearly defined for each slave station. PROFIBUS transmits 16-bit packets periodically. Figure 2-4 shows the structure of the packet.

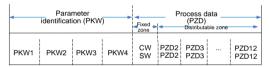


Figure 2-4 PROFIBUS-DP information frame data structure

Parameter zone:

PKW1—Parameter identification

PKW2—Array index number

PKW3--Parameter value 1

PKW4---Parameter value 2

Process data:

CW—Control word (transmitted from the master to a slave. For description, see Table 2-5)

SW—State word (transmitted from a slave to the master. For description, see Table 2-7.)

PZD—Process data (defined by users)

(When the process data is output by the master to a slave, it is a reference value; and when the process data is input by a slave to the master, it is an actual value.)

PZD zone (process data zone): The PZD zone in a communication packet is designed for controlling and monitoring a VFD. The master and slave stations always process the received

PZD with the highest priority. The processing of PZD takes priority over that of PKW, and the master and slave stations always transmit the latest valid data on the interfaces.

CWs and SWs

Using CWs is the basic method of the fieldbus system to control VFDs. A CW is transmitted by the fieldbus master station to a VFD device. The VFD device responds to the bit code information of the CW and feeds state information back to the master through an SW.

Reference value: A VFD device may receive control information in multiple channels, including analog and digital input terminals, VFD control panel, and communication modules. To enable the control over VFD devices through PROFIBUS, you need to set the communication module as the controller of the VFD device.

Actual value: An actual value is a 16-bit word that includes information about VFD device operation. The monitoring function is defined through VFD parameters. The conversion scale of an integer transmitted as an actual value from the VFD device to the master depends on the set function. For more description, see the related VFD operation manual.

Note: A VFD device always checks the bytes of a CW and reference value.

Task packet (master station -> VFD)

CW: The first word in a PZD task packet is a VFD CW. Table 2-5 describes S1 series VFD CWs

Bit	Name	Value	State to be entered/description			
		1	Forward running			
		2	Reverse running			
		3	Forward jogging			
0–7	Communication-based	4	Reverse jogging			
0-7	control command	5	Decelerating to stop			
		6	Coasting to stop (emergency stop)			
		7	Fault reset			
		8	Jogging stopped			
8	8 Enabling writing 1 Enabling writing (mainly through Pk PkW4)					
0.40	Matanananaanin	00	Motor 1			
9–10	Motor group setting	01	Motor 2			
11	Control mode switching	1	Enabling the switching between torque control and speed control			
''	Control mode switching	0	No switching			

Table 2-5 S1 series VFD CWs

Bit	Name	Value	State to be entered/description			
40	Resetting power consumption to zero	1	Enabling the function for resetting power consumption to zero			
12		0	Disabling the function for resetting power consumption to zero			
13	Pre-excitation	1	Enabling pre-excitation			
13		0	Disabling pre-excitation			
14	DC broking	1	Enabling DC braking			
14	DC braking	0	Disabling DC braking			
4.5	Heartbeat reference	1	Enabling heartbeat			
15		0	Disabling heartbeat			

Reference value (REF): The second to twelfth words in a PZD task packet are the main settings. The main frequency settings are provided by the main setting signal source. Table 2-6 describes the settings of S1 series VFD.

Table 2-6 Settings of S1 series VFD

Function code	Word	Value range	Default value
P15.02	Received PZD2	0–31 0: Invalid	0
P15.03	Received PZD3	1: Set frequency (0–Fmax, unit: 0.01 Hz) 2: PID reference (0–1000, in which 1000 corresponds to	0
P15.04	Received PZD4	100.0%) 3: PID feedback (0–1000, in which 1000 corresponds to 100.0%)	0
P15.05	Received PZD5	4: Torque setting (-3000–+3000, in which 1000 corresponds to 100.0% of the rated current of the	0
P15.06	Received PZD6	motor) 5: Setting of the upper limit of forward running frequency (0–Fmax, unit: 0.01 Hz)	0
P15.07	Received PZD7	6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz)	0
P15.08	Received PZD8	7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current	0
P15.09	Received PZD9	of the motor) 8: Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the	0
P15.10	Received PZD10	motor) 9: Virtual input terminal command, 0x000-0x3FF	0

Function code	Word	Value range	Default value
P15.11	Received PZD11	(corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence)	0
P15.12	Received PZD12	10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000–+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) 20–31: Reserved	0

Response packet (VFD -> master station)

SW: The first word in a PZD response packet is a VFD SW. Table 2-7 describes the VFD SWs.

Table 2-7 S1 series VFD SWs

Bit	Name	Value	State to be entered/description
		1	In forward running
		2	In reverse running
0–7	Dunning state	3	Stopped
0-7	Running state	4	Faulty
		5	POFF
		6	In pre-excitation
8	Puo voltogo aetabliahad	1	Ready to run
0	Bus voltage established	0	Not ready to run
0.40	Matan mann fa adh a al-	0	Motor 1
9–10	Motor group feedback	1	Motor 2
11	Motor type feedbook	1	Synchronous motor
11	Motor type feedback	0	Asynchronous motor

Bit	Name	Value	State to be entered/description
12	Overload pre-alarm	1	Overload pre-alarm generated
12	feedback	0	No overload pre-alarm generated
40		0	Keypad-based control
13	Divis/Chan and do	1	Terminal-based control
14	Run/Stop mode	2	Communication-based control
14		3	Reserved
15	Heartbeat feedback	1	Heartbeat feedback
15	пеаньеан теебраск	0	No heartbeat feedback

Actual value (ACT): The second to twelfth words in a PZD task packet are the main actual values. The main actual frequency values are provided by the main actual value signal source.

Table 2-8 Actual state values of S1 series VFD

Function code	Word	Value range	Default value
P15.13	Transmitted PZD2	0–31	0
P15.14	Transmitted PZD3	0: Invalid	0
P15.15	Transmitted PZD4	1: Running frequency (x100, Hz)	0
P15.16	Transmitted PZD5	2: Set frequency (x100, Hz)	0
P15.17	Transmitted PZD6	3: Bus voltage (×10, V)	0
P15.18	Transmitted PZD7	4: Output voltage (x1, V)	0
P15.19	Transmitted PZD8	5: Output current (×10, A)	0
P15.20	Transmitted PZD9	6: Actual output torque (x10, %)	0
P15.21	Transmitted PZD10	7: Actual output power (×10, %)	0
P15.22	Transmitted PZD11	8: Rotating speed of the running (x1, RPM) 9: Linear speed of the running (x1, m/s)	0
P15.23	Transmitted PZD12	10: Ramp frequency reference 11: Fault code 12: Al1 value (×100, V) 13: Al2 value (×100, V) 14: Al3 value (×100, V) 15: HDIA frequency (×100, kHz) 16: Terminal input state 17: Terminal output state 18: PID reference (×100, %) 19: PID feedback (×100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number)	0

Function code	Word	Value range	Default value
		23: MSB of position feedback (signed	
		number)	
		24: LSB of position feedback (unsigned	
		number)	
		25: State word 2	
		26: HDIB frequency value (x100, kHz)	
		27: High-order bit of PG card pulse	
		feedback	
		28: Low-order bit of PG card pulse	
		feedback	
		29: High-order bit of PG card pulse	
		reference	
		30: Low-order bit of PG card pulse	
		reference	
		31: Function parameter mapping	
		(PZD2–PZD12 correspond to	
		P14.60-P14.70)	

PKW zone (parameter identification flag PKW1—numerical zone): The PKW zone describes the processing mode of the parameter identification interface. A PKW interface is not a physical interface but a mechanism that defines the transmission mode (such reading and writing a parameter value) of a parameter between two communication ends.



Figure 2-5 Parameter identification zone

In the periodic PROFIBUS-DP communication, the PKW zone consists of four 16-bit words. Table 2-9 describes each word in the PKW zone.

Table 2-9 Fach word in the PKW zone

First word PKW 1 (16 bits)								
Bits 15–00 Task or response identification flag 0–7								
Second word PKW2 (16 bits)								
Bits 15–00 Basic parameter address 0–247								
	Third word PKW3 (16 bits)							
Bits 15-00	Value (most significant word) of a parameter or error code of the returned value	00						
	Fourth word PKW4 (16 bits)							
Bits 15–00 Value (least significant word) of a parameter 0–65535								

Note: If the master station requests the value of a parameter, the values in PKW3 and PKW4 of the packet that the master station transmits to the VFD are no longer valid.

Task request and response: When transmitting data to a slave, the master uses a request number, and the slave uses a response number to accept or reject the request.

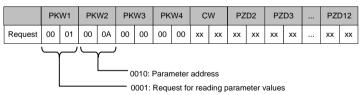
Table 2-10 describes the request and response functions.

Table 2-10 Task identification flag PKW1

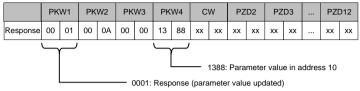
Requ	est No. (from the master to a slave)	Res	oonse signal
Request No.	Function	Acceptance	Rejection
0	No task	0	-
1	Requesting the value of a parameter	1, 2	3
2	Modifying a parameter value (one word) [modifying the value only on RAM]	1	3 or 4
3	Modifying a parameter value (two words) [modifying the value only on RAM]	2	3 or 4
4	Modifying a parameter value (one word) [modifying the value on both RAM and EEPROM]	1	3 or 4
5	Modifying a parameter value (two words) [modifying the value only on both RAM and EEPROM]	2	3 or 4

The requests #2, #3, and #5 are not supported currently.

Table 2-11 Response identification flag PKW1

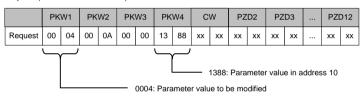

	Response No. (from a slave to the master)
Response No.	Function
0	No response
1	Transmitting the value of a parameter (one word)
2	Transmitting the value of a parameter (two words)
3	The task cannot be executed and one of the following error number is returned: 1: Invalid command 2: Invalid data address 3: Invalid data value 4: Operation failure 5: Password error 6: Data frame error 7: Parameter read only 8: Parameter cannot be modified during VFD running 9: Password protection

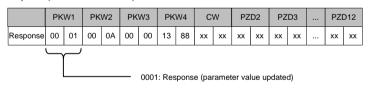
PKW examples


Example 1: Reading the value of a parameter

You can set PKW1 to 1 and PKW2 to 0A to read a frequency set through keypad (the address of the frequency set through keypad is 10), and the value is returned in PKW4. The following data is in hexadecimal format.

Request (master station -> VFD)


Response (VFD -> master station)


Example 2: Modifying the value of a parameter (on both RAM and EEPROM)

You can set PKW1 to 4 and PKW2 to 10 to modify a frequency set through keypad (the address of the frequency set through keypad is 10), and the value to be modified (50.00) is in PKW4.

Request (master station -> VFD)

Response (VFD-> master station)

PZD examples: The transmission of the PZD zone is implemented through VFD function code settings. For the function codes, see the related HITACHI VFD operation manual.

Example 1: Reading the process data of a VFD

In this example, PZD3 is set to "8: Rotating speed of the running" through the VFD parameter P15.14. This operation sets the parameter forcibly. The setting remains until the parameter is set to another option.

Response (VFD -> master station)

	PK	W1	PK	W2	PK	W3	PK	W4	Ö	W	PΖ	D2	PΖ	D3	 PZI	D12
Response	XX	XX	XX	XX	XX	хх	XX	XX	XX	XX	XX	XX	00	0Α	 XX	XX

Example 2: Writing process data to a VFD device

In this example, PZD3 is set to "2: PID reference" through the VFD parameter P15.03. The parameter specified in each request frame is updated with the information contained in PZD3 until another parameter is specified.

Request (master station -> VFD)

	PK	W1	PK	W2	PK	W3	PK	W4	C	W	PΖ	D2	PΖ	D3	 PZI	012
Response	XX	00	00	 XX	XX											

Subsequently, the information contained in PZD3 is used as tractive force reference in each request frame until another parameter is specified.

Chapter 3 CANopen communication card

3.1 Overview

- Thanks for choosing HITACHI S1-CO CANopen communication cards. This manual describes the function specifications, installation, basic operation and settings, and information about the network protocol. To ensure that you install and operate the product properly, read this manual and the communication protocol section in the VFD operation manual carefully before you use the product.
- This manual only describes how to operate the CANopen communication card and the related commands but does not provide details about the CANopen protocol. For more information about the CANopen protocol, read the related specialized articles or books.
- This communication card is defined as a CANopen slave station communication card and is used on a VFD that supports CANopen communication.
- 4. The CANopen communication of this communication card supports access to VFDs through process data objects (PDOs) and service data objects (SDOs). PDOs and SDOs are used to read the object dictionary defined by the manufacturer.

Switch SW2									
1	2	Protocol							
OFF	OFF	CANopen							
ON	OFF	CAN manter/alove							

Table 3-1 Protocol selection relationship for switch SW2

Note: For S1-CO, before power-on, set the switch according to the protocol selection relationship to correspond to the actually used protocol.

3.2 Features

- Supported functions
- Supports the CAN2.0A protocol.
- Supports CANopen DS301.
- 2. Supported CANopen services
- PDO: Supports four pairs of PDO services (PDO1 TX to PDO4 TX, and PDO1 RX to PDO4 RX), where the PDO1 pair is used to read and write parameters of a VFD, and the PDO2 to PDO4 pairs are used to control and obtain the actual parameter values of the VFD in real time.
- SDO: SDO information adopts the "client/server" mode and is used to configure slave nodes and provide access to the object dictionary of each node.

- Supports the emergency service.
- Supports node protection (NMT Node Guarding).
- > Supports heartbeat packets (Heartbeat Producer).
- Supports network management (NMT).
 - Supports NMT module control.
 - · Supports NMT broadcast addresses.
 - · Supports NMT error control.
 - Supports boot-up.
- Supports SYNC (1–240).
- Supports asynchronous transmission of 254 and 255.
- Supports disabled time.
- Supports event timers.
- Supports manufacturer-defined object dictionary. You can use SDOs to control and obtain the actual parameter values of a VFD in real time.
- 3. Non-supported CANopen services
- > Saves object dictionary parameters at power outage
- Time stamp service
- 4. Supported CANopen addresses and baud rates

Table 3-1 Supported addresses and baud rates

Item	Supported specification
Address	1–127 (decimal)
	1000 kbps
	800 kbps
	500 kbps
Baud rate	250 kbps
Baud rate	125 kbps
	100 kbps
	50 kbps
	20 kbps

Note: To enable the CANopen functions (except the CANopen communication timeout fault time and baud rate), you need only to select the related PROFIBUS channels. If modification is made on the VFD operation manual, the operation is subject to the CANopen channel, without prior notice in this manual.

3.3 Electrical wiring

Use shielding wires as the bus cable, if possible. It is recommended that you connect the shielding wire to the PE terminal of the communication card. When there are only two devices for CAN master-slave communication, both devices shall be connected to the terminal resistor. When there are more than two devices, the starting device and terminal device shall be connected to the terminal resistor. The terminal resistor of the communication card can be connected through its terminal resistor switch. Figure 3-1 shows the electrical wiring.

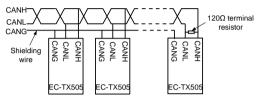


Figure 3-1 Electrical wiring diagram

3.4 Terminal wiring

3.4.1 Terminal layout

Table 3-2 CANopen card terminal layout

	PGND	PF	CANH	CANI

3.4.2 Terminal functions

Table 3-3 CANopen card terminal functions

Signal	Port	Terminal function
PGND	/	Isolation ground
PE	/	CAN bus shield
CANH	/	CAN bus high-level signal
CANL	/	CAN bus low-level signal
	OFF-bounced	No terminal resistor is connected between CAN_H and
Terminal	up	CAN_L.
resistor	ON-pressed	A 120Ω terminal resistor is connected between CAN_H
		and CAN_L.
0	00	CANopen
Switch applicable to cards	10	CAN master/slave
	01	Reserved
carus	11	Reserved

Table 3-4 Indicator functions

Indicator	Definition	Function	
LED1	Status indicator	On: The expansion card is establishing a connection with the control board. Blinking periodically: The expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the	
		other 0.5s). Off: The expansion card is disconnected from the control board.	
LED2	Run indicator	On: The communication card is running. Off: A fault occurs. Check whether the reset pin of the communication card and the power supply are properly connected. The communication card is in the stopped state. Blinks: The communication card is in the pre-operation state. Blinks once: The communication card is in the stopped state.	
LED3	Alarm indicator	On: The CAN controller bus is off or the VFD has a fault. Off: The communication card is in the working state.	
LED4	Power indicator	It is on since the control board feeds power to the communication card.	

3.5 Communication

3.5.1 Packet format

CAN2.0A packets are used to transmit data between the master station and bus nodes through data frames.

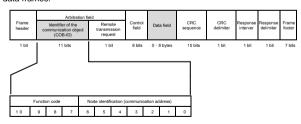


Figure 3-2 Packet structure

Communication object	Function code (binary)	COB-ID (hexadecimal)
NMT	0	0x00
SYNC	1	0x80

Communication object	Function code (binary)	COB-ID (hexadecimal)
EMERGENCY	1	0x81-0xFF
PDO1 Tx	11	0x181-0x1FF
PDO1 Rx	100	0x201-0x27F
PDO2 Tx	101	0x281-0x2FF
PDO2 Rx	110	0x301-0x37F
PDO3 Tx	111	0x381-0x3FF
PDO3 Rx	1000	0x401-0x47F
PDO4 Tx	1001	0x481-0x4FF
PDO4 Rx	1010	0x501-0x57F
SDO Tx	1011	0x581-0x5FF
SDO Rx	1100	0x601-0x67F
Node protection	1110	0x701-0x77F

COB-IDs vary according to communication address, but for one command, the COB-IDs are within a certain range.

Note: The commands described in this manual are all data frames if it is not specified that they are remote frames.

3.5.2 CANopen state transition

The start sequence defined in the CANopen communication protocol is supported. Figure 3-3 shows the NMT state transition diagram.

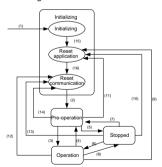


Figure 3-3 NMT state diagram

Table 3-2 NMT state transition

State transition	Required triggering event	
(1)	Automatic initialization after power-on	
(2)	Automatic change after initialization	
(3), (6)	Command of the NMT master station for starting a remote node	
(4), (7)	Command of the NMT master station for entering the pre-operation state	
(5), (8)	Command of the NMT master station for entering the stopped state	
(9), (10), (11)	Command of the NMT master station for resetting a remote node	
(12), (13), (14)	Command of the NMT master station for resetting a remote node communication parameter	

Different services are supported in different states, as described in Table 3-3.

Table 3-3 Services supported in various NMT states

Service	Pre-operation state	Operation state	Stopped state
PDOs	No	Yes	No
SDOs	Yes	Yes	No
SYNC packets	Yes	Yes	No
Emergency packets	Yes	Yes	No
Network management	Yes	Yes	No
Error control	Yes	Yes	Yes

3.5.3 Management service command (NMT)

This function is used by the master station to control the NMT states of slave station nodes.

Command

Master station -> slave station

COB-ID	Byte0	Byte1
0x000	Command specifier (CS)	Node-ID (Node ID)

Description

In this command, the COB-ID is 0x00. If Node-ID is set to 0, the command is broadcast to all CANopen slave stations, and each slave station must execute the NMT command. Table 3-4 describes the function of each CS.

Table 3-4 Function of each CS

NMT CS	NMT service (control action)	
0x01	Starts a slave station device.	
0x02	Stops a slave station device.	
0x80	Enables a slave station to enter the pre-operation state.	
0x81	Resets a slave station.	
0x82	Resets communication of a node.	

For example, the command to enable S1-CO, whose node ID is 3, to enter the pre-operation state is described as follow

COB-ID	Byte0	Byte1
0x000	0x80	0x03

For another example, the command to start all S1-CO nodes on the CANopen network is described as follows.

COB-ID	Byte0	Byte1
0x000	0x01	0x00

3.5.4 Node protection (NMT Node Guarding)

By using the node protection service, the NMT master node can detect the current state of each node.

Command

Request: Master station (remote frame) -> slave station

COB-ID	No data
0x700 + Node-ID	

Response: Slave station -> master station

COB-ID	Byte0 (state value)
0x700 + Node-ID	Bit 7: Triggering bit; Bits 0 to 6: State

Description

The most significant bit (MSB) bit 7 of Byte0 (state value) in the response command is the triggering bit, that is, the value of bit 7 is alternated between 0 and 1 each time when the slave station transmits a response frame to distinguish frames. Bits 0 to 6 indicate the state of the slave station. Table 3-5 describes the state values and their corresponding state.

Table 3-5 State values and their corresponding states

State value (Byte0: Bits 0-6)	State
0x00	Initializing
0x04	Stopped
0x05	Operation
0x7F	Pre-operational

For example, the command for the master station to detect the state of slave station 3.

Master station (remote frame) -> slave station

COB-ID	No data
0x703	/

After receiving the node protection command transmitted by the master station, the slave station transmits the following command response to the master station.

COB-ID	Byte0 (state value)
0x703	0x85

In the command, bit 7 of Byte0 is 1, and the state value is 0x05, indicating that slave station 3 is in the operation state. If receiving another node protection command, the slave station transmits a command frame in which the state value is 0x05 to the master station, and the value of bit 7 is alternated to 0.

3.5.5 Heartbeat packet (Heartbeat Producer)

In some cases, the master station requires that a slave station automatically transmits a frame of heartbeat packets at an interval, so that it can learn the state of the slave station in real time. The interval parameter (data length: 16 bits; unit: ms) is defined in the object dictionary 0x1017. If the interval is set to 0, the slave station does not transmit heartbeat packets. For this CANopen communication card, the interval is set to 0 by default.

Command

Slave station -> master station

COB-ID	Byte0
0x700 + Node-ID	State value

Description

The heartbeat packets are in the same format with the node protection response frames. The difference between them is that no triggering bit alternation is performed for heartbeat packets (the triggering bit is always 0). Table 3-5 describes the state values.

For example, if slave station 3 is in the operation state and the interval parameter in 0x1017 is set to 100, slave station 3 transmits a frame of heartbeat packets every 100 ms.

COB-ID	Byte0
0x703	0x05

SDOs can be used to disable heartbeat packets, transmitting 2B 17 10 00 00 00 00 00 (setting the interval to 0).

Note: On the communication card, node protection and heartbeat packets cannot be used simultaneously.

3.5.6 Start packet (NMT Boot-up)

After being initialized (booted up), the communication card transmits a start packet.

Command

Slave station -> master station

COB-ID	Byte0
0x700 +Node-ID	0x00

Example

For example, after being initialized, the communication card whose node ID is 3 transmits the following start packet.

COB-ID	Byte0
0x703	0x00

3.5.7 Synchronous packet object (SYNC)

Generally, SYNC signals are transmitted by the CANopen master station cyclically. A SYNC signal does not contain any data and is used mainly to request PDO Tx of a slave station node of the synchronous transmission type. 0x1005 in the object dictionary defines COB-IDs of the objects that receive synchronous packets, and they are set to 0x80 in the CANopen pre-defined connection set. For PDO Tx, the transmission types of 1 to 240 indicate synchronous transmission.

Command

Master station -> slave station

COB-ID	No data
0x80	

3.5.8 Emergency packet object (EMCY)

This packet is transmitted when an internal error occurs on the communication card or VFD, or an error is deleted.

Command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x80 +	Emergei co	. *	Error		٧	FD error c	ode	
Node-ID	LSB	MSB	register	bit7-0	bit15-8	bit23-16	bit31-24	bit39-32

Description

An emergency error code is two bytes. Byte0 is the least significant byte (LSB), and Byte1 is the most significant byte (MSB). A VFD error code is five bytes. Byte3 is the LSB, and Byte7 is the MSB

An emergency error code indicates the type of the current error, as described in Table 3-6. The error register stores the type of the current error. You can determine the error type indicated by the current emergency packet according to the value stored in the register. Table 3-7 describes the indication of the bits of the error register. For information about the VFD error codes, see the VFD operation manual. The function code P07.27 in Appendix B describes the error codes of S1 VFD.

Emergency error code (hex) Code function description 00xx Error reset or no error 10xx Generic error 20xx Current Current error on the, device input side 21xx 22xx Current error inside the device 23xx Current error on the device output side Voltage error 30xx31xx Mains voltage 32xx Voltage inside the device 33xx Output voltage 40xx Temperature 41xx Ambient temperature 42yy Device temperature Device hardware 50xx Device software 60xx 61xx Internal software User software 62xx 63xx Data set

Table 3-6 Emergency error codes

Emergency error code (hex)	Code function description				
70xx	Additional modules				
80xx	Monitoring				
81xx	Communication error				
8110	CAN overrun				
8120	Error passive				
8130	Life guard Error or heartbeat error				
8140	Recovered from Bus-Off				
82xx	Protocol error				
8210	PDO not processed due to length error				
8220	Length exceeded				
90xx	External error				
F0xx	Additional functions				
FFxx	Device specific				

Table 3-7 Error register bits

Error register bit	Error type
0	Generic error or no error
1	Current error
2	Voltage error
3	Temperature error
4	Communication error
5	Device description error
6	Reserved (=0)
7	Manufacturer-defined error

For example, if the "inverter unit phase U protection (OUT1)" fault occurs on the S1 VFD whose node ID is 3, and the fault type is 1 (that is, the VFD error code is 1), the communication card transmits the following emergency packet.

COB-ID	Emergency error code		Error register		VFD error code					
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
0x83	0x00	0x30	0x04	0x01	0x00	0x00	0x00	0x00		

As you can see in the command, the emergency error code is 0x3000, indicating a voltage error. The error register is 0x04, that is, the second bit is "1", indicating a voltage error. The device error code is 0x0000000001. See the S1 VFD operation manual, and you can find that the error code 1 indicates the "inverter unit phase U protection (OUT1)" fault.

After the fault is reset, the communication card transmits the following emergency packet to notify the master station that the slave station is no longer faulty.

COB-ID	Emergency error code		Error register		VFD error code					
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		
0x83	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00		

3.5.9 Service data object (SDO)

SDOs are mainly used to transmit non-time key data. By using SDOs, the master station can read data from and write data to the object dictionary of a device.

Command

Request: master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x600+NodeID	Request	Object	index	Cb.:	Response data			
	code	LSB	MSB	Subindex	bit7-0	bit15-8	bit23-16	bit31-24

Response: Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x580+NodeID	Respons	Object	t index	Subindex	Response data				
	e code	LSB	MSB	Subindex	bit7-0	bit15-8	bit23-16	bit31-24	

Description

An object index is two bytes. Byte1 is the LSB, and Byte2 is the MSB. For information about the indexes and subindexes, see the object dictionary in the appendix. Request codes include request codes for reading and those for writing.

Request codes for writing vary according to the character length of items in the object dictionary, and the request code for reading are 0x40. See Table 3-8.

Response codes indicating successful reading vary according to the character length of items in the object dictionary, and the response code indicating successful writing are 0x60. The response codes indicating reading failure and writing failure are both 0x80. See Table 3-9.

response codes indicating reading failure and writing failure are both 0x80. See Table 3-9.

Table 3-8 SDO request codes and requested data

Request Request Command Requested data

Request	Request	Command	Requested data						
code type	code	description	Byte4	Byte5	Byte6	Byte7			
	0x23	Writes 4-byte data	bit7-0	bit15-8	bit23-16	bit31-24			
Write	0x2B	Writes 2-byte data	bit7-0	bit15-8	-	-			
	0x2F	Writes 1-byte data	bit7-0	-	-	-			
Read	0x40	Reads data	-	-	-	-			

Table 3-9 SDO response codes and response data

Response	Response	Command	Response data					
code type	code	description	Byte4	Byte5	Byte6	Byte7		
	0x43 Reads 4-byte		bit7-0	bit15-8	bit23-16	bit31-24		
Read	0x4B	Reads 2-byte data	bit7-0	bit15-8	-	-		
	0x4F	Reads 1-byte data	bit7-0	-	-	-		
Write	0x60	Writing succeeds	-	-	-	-		
Read/write	000	Reading/writing		Interruption	error code			
Read/Write	0x80	fails	bit7-0	bit15-8	bit23-16	bit31-24		

Note: The symbol "-" in Table 3-8 and Table 3-9 indicates that the byte is reserved and provides no function.

Table 3-10 describes the interruption error codes.

Table 3-10 Interruption error codes

Interruption code	Code function description
0503 0000	Triggering bit not alternated
0504 0000	SDO protocol times out
0504 0001	Invalid or unknown client/server
0504 0002	Invalid block size
0504 0003	Invalid sequence number
0504 0004	CRC error
0504 0005	Memory overflow
0601 0000	No access to the object
0601 0001	Attempts to read a write-only object
0601 0002	Attempts to write information to a read-only object
0602 0000	Object cannot be found in the object dictionary
0604 0041	Object cannot be mapped to PDO
0604 0042	Number and length of the object to be mapped exceeds the PDO
0004 0042	length
0604 0043	Common parameter incompatibility
0604 0047	Common internal incompatibility of the device
0606 0000	Object access failure caused by hardware error
0607 0010	Data type not matched; service parameter length not matched
0609 0011	Subindex cannot be found in the object dictionary
0609 0030	Parameter value range exceeded
0609 0031	Written parameter value too large
0609 0032	Written parameter value too small

Interruption code	Code function description
0609 0036	Max. value less than Min. value
0800 0000	Common error
0800 0020	Data failed to be transmitted or stored in the application
0800 0021	Data failed to be transmitted or stored in the application due to
0600 0021	device control
0800 0022	Data failed to be transmitted or stored in the application due to the
0600 0022	current state of the device
0800 0023	Error occurs dynamically on the object dictionary or object
0000 0023	dictionary cannot be found

For example, slave station 3 reads data from and writes data to the object whose index is 0x1801 and subindex is 03. (The object whose index is 0x1801 and subindex is 03 indicates the disabled time of PDO2 Tx. For more information, see Chapter 4.)

Write operation example: To modify the disabled time of PDO2 Tx to 1000 ms, the master station transmits the following write operation command.

COB-ID	Request code	Object index		Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x2B	0x01	0x18	0x03	0xe8	0x03	0x00	0x00

After receiving the command transmitted by the master station, the slave station transmits the following command response if the modification is successful.

COB-ID	Response code	Object index		Subindex	Response data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x60	0x01	0x18	0x03	0x00	0x00	0x00	0x00

Read operation example: To read the disabled time of PDO2 Tx, the master station transmits the following read operation command.

COB-ID	Request code	Object	index	Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x01	0x18	0x03	0x00	0x00	0x00	0x00

After receiving the command transmitted by the master station, the slave station transmits the following command response if the current disabled time of PDO2 Tx is 1000 ms.

COB-ID	Respons DB-ID e code		Object index		Response data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x43	0x01	0x18	0x03	0xe8	0x03	0x00	0x00

Read/write error example: The master station transmits the following read operation command to read an object (whose index is 0x6000 and subindex is 0x00) that cannot be found.

COB-ID	Request code	Object index		Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x00	0x60	0x00	0x00	0x00	0x00	0x00

The object cannot be found, and therefore the slave station transmits the following read/write error command response.

COB-ID	Response code	Object index		Subindex	Response data				
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x583	0x80	0x00	0x60	0x00	0x00	0x00	0x02	0x06	

The error code in the response is 0x06020000, indicating that "Object cannot be found in the object dictionary".

3.6 Process data object (PDO)

The communication card provides four PDO Tx commands (whose indexes are 0x1800 to 0x1803) and four PDO Rx commands (whose indexes are 0x1400 to 0x1403). PDO Rx is a PDO command transmitted by the master station to a slave station, that is, it is a master station command. PDO Tx is a PDO command transmitted by a slave station to the master station.

The CW, SW, setting, and return value of each PDO of the communication card are all defined with a "manufacturer-defined object dictionary". In this way, the process data of a VFD can be monitored not only through PDOs but also through SDOs. For more information, see the next chapter. Each PDO command is labeled with "manufacturer-defined object dictionary" in the format of 0xXXXX.HH, where XXXX indicates an index, HH indicates a subindex, and both of them are hexadecimal

3.6.1 Triggering mode of PDO Tx

Each PDO Tx is defined with a transmission type, disabled time, and event timer. The corresponding subindex of the transmission type is 0x02, that of the disabled time is 0x03, and that of the event timer is 0x05. Therefore, the object dictionary index corresponding to PDO2 Tx is 0x1801, and the subindex is 0x02. The same principle applies to other PDO Tx commands. For more information, see Appendix A.

Asynchronous triggering (254): When the value of the event timer is not zero, a slave station transmits PDO Tx commands periodically. For example, if the event timer of PDO2 Tx is set to 200, the slave station transmits a PDO2 Tx command at the interval of 200 ms. When the value of the event timer is zero, the slave station transmits a PDO Tx command once the corresponding PDO Tx data changes, and the transmission interval is subject to the disabled time. A PDO Tx packet can be transmitted only once in the disabled time, which effectively reduces the load of the bus. When the disabled time is set to a period shorter than 50 ms, 50 ms is used as the disabled time.

Asynchronous triggering (255): When the value of the event timer is not zero, a slave station transmits PDO Tx commands periodically. For example, if the event timer of PDO2 Tx is set to 200, the slave station transmits a PDO2 Tx command at the interval of 200 ms. When the value of the event timer is zero, the slave station transmits a PDO Tx command once a corresponding PDO Rx command is received. For example, after receiving a PDO2 Rx command, the slave station transmits a PDO2 Tx command.

Triggering mode	Transmission type (decimal)		PDO1 TX		PDO3 TX	PDO4 TX
Synchronous	1-240	/	Non-supported	Supported	Supported	Supported
	254 255	Event timer	Non-supported	Supported	Supported	Supported
A		Disabled time	Non-supported	Supported	Supported	Supported
Asynchronous		Event timer=0	Supported	Supported	Supported	Supported
		Event timer=0	Non-supported	Supported	Supported	Supported

Table 3-11 Triggering modes supported by the communication card

Table 3-12 Default PDO Tx settings of the communication card

	PDO1 TX	PDO2 TX	PDO3 TX	PDO4 TX
Transmission type	255	254	254	254
Event timer (ms)	0	0	0	0
Disabled time (ms)	500	500	500	500

For how to set the triggering type of PDO Tx, see the description of SDO commands.

3.6.2 PDO1

PDO1 is used to read and write parameters of the VFD. The function of PDO1 is similar to that of an SDO. SDOs are used to read and write objects of an object dictionary, and PDO1 is used

to read and write parameters of the VFD.

Note: PDO1 Tx support only the transmission type of asynchronous transmission 255. Do not set it to other transmission types, and do not try to set the event timer to periodically transmits PDO1 Tx to the master station.

3.6.2.1 PDO1 Rx

Command

Request: Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5
0x200+NODE-ID	Request code		Parameter address		Requested data	
	0x2100.00		0x2100.01		0x2100.02	

Description

A request code is two bytes. Byte0 is the LSB, and Byte1 is the MSB. The manufacturer defines the index 0x2100 and subindex 0x00 for the request codes. Table 3-13 describes the functions of the request codes.

Table	3-13	Request	codes

Request code	Function
0	No task
1	Reading the value of a parameter
2	Modifying a parameter value [modifying the value only on RAM]
4	Modifying a parameter value [modifying the value only on both RAM and EEPROM] (reserved)

A parameter address is two bytes. Byte2 is the LSB, and Byte3 is the MSB. It indicates the address of the parameter to be read or modified.

S1 series VFD function code address representation rules: The MSB is the hexadecimal form of the number before the dot mark, and LSB is that of the number behind the dot mark. Take P10.01 as an example, the number before the dot mark is 10, that is, the MSB of the parameter address is 0x0A; and the number behind the dot mark is 01, that is, the LSB is 0x01. Therefore, the function code address is 0x0A01.

Function Default Name Detailed parameter description Modify code value 0: Stops after running once Simple PLC 1: Keeps running in the final value P10.00 O mode after running once 2: Cyclic running Simple PLC 0: Not saving data at power outage P10.01 ٥ memory 1: Saving data at power outage

Table 3-14 S1 series VFD parameter addresses

VFD parameter address representation rules: You can see the function code in the function parameter list in the VFD operation manual. The hexadecimal form of the value corresponding to the function code is the parameter address. For example, the value corresponding to the function code P13.14 is 1314, and therefore the parameter address of the function code is 0x522 (that is, 1314 in the decimal form).

A piece of requested data is two bytes. Byte4 is the LSB, and Byte5 is the MSB. It indicates the data to be modified. When the command is transmitted for reading data, the requested data is not used.

Note: The data domain of PDO1 Rx must be six bytes. Otherwise, the communication card reports an emergency packet.

3.6.2.2 PDO1 Tx

Command

Response: Slave station -> master station

selection

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x180+NODEID	Response code		Error code		Response data		0x00	0x00
	0x200	00.00	0x20	00.01	0x20	00.02	-	-

Description

Byte6 and Byte7 are reserved and both are 0x00.

A response code is two bytes. Byte0 is the LSB, and Byte1 is the MSB. Table 3-15 describes the functions of the response codes.

Table 3-15 Response codes

Response code	Function
0	No response
1	Reading or writing succeeds
3	A reading or writing error occurs. Table 3-16 describes the error
9	codes.

A piece of response data is four bytes. Byte4 is the LSB, and Byte7 is the MSB. When a write command is responded, the response data is the data to be modified; and when a read command is responded, the response data is the data to be read.

An error code is two bytes. Byte2 is the LSB, and Byte3 is the MSB. Error codes are valid only when the response code is 3. An error code indicates the reason why it fails to respond to PDO1 Rx. Table 3-16 describes the definitions of the error codes.

Table 3-16 Error codes

Code	Name	Definition
00H	No error	/
01H	Invalid command	The operation corresponding to the request code is not allowed to be executed. The possible causes are as follows: • The function code is applicable only on new devices and is not implemented on this device. • The slave station is in the faulty state when processing this request.
02H	Invalid data address	For a slave device, the data address in the request of the master station is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid.
03H	Invalid data value	The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request. Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.
04H	Operation failure	The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.
05H	Password error	The password entered in the password verification address is different from that set by the user.
06H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer.
07H	Parameter read-only	The parameter to be modified in the write operation of the master station is a read-only parameter.

Code	Name	Definition				
08H	Parameter cannot be modified in	The parameter to be modified in the write operation of the master station cannot be modified during the running of the				
	running	VFD.				
09H	Password protection	A user password is set, and the master station does not provide the password to unlock the system when performing a read or write operation. The error of system locked is reported.				

Example of PDO1

The VFD is a S1 series VFD, and the slave station address is 3. Assume that you want to set the function code P15.13 of the VFD to 1.

Command analysis: The parameter address of P15.13 is 0x0F0D. According to the protocol, the request code of PDO1 Rx is 0x02, the parameter address is 0x0F0D, and the requested data is 0x01, and therefore PDO1 Rx transmitted by the master station is as follows.

COB-ID	Reques	st code	Parameter	address	Requested data		
COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	
0x203	0x02	0x00	0x0D	0x0F	0x01	0x00	

If the VFD parameter is successfully modified, the following PDO1 Tx command is returned.

COB-ID		onse de	Error	Error code		Response data		-	
	Byte0 By		Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	
0x183	0x01	0x00	0x00	0x00	0x01	0x00	0x00	0x00	

3.6.3 PDO2 Rx

PDO2 Rx is used to modify CWs and real-time process data (setting 1, setting 2, and setting 3) of a VFD. A CW is used to control the start and stop of a VFD, and settings are used to control the real-time running values of the VFD, such as set frequency.

Command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x300+NODEID	CW		Setting 1		Setting 2		Setting 3	
	0x210	01.00	0x21	00.03	0x2100.04		0x210	00.05

Description

A CW is two bytes. Byte0 is the LSB, and Byte1 is the MSB. Table 3-17 describes S1 series VFD CWs.

Table 3-17 S1 series VFD CWs

Bit	Name	Value	Description
		1	Forward running
		2	Reverse running
		3	Forward jogging
0–7	Communication-based	4	Reverse jogging
0-7	control command	5	Stop
		6	Coast to stop (emergency stop)
		7	Fault reset
		8	Stop jogging
8	Enable write	1	Enable writing (mainly through PKW1 to
	Zilabio IIIIlo	·	PKW4)
9–10	Motor group setting	00	Motor 1
9-10	Motor group setting	01	Motor 2
11	Control mode evitables	1	Enable torque/speed control switching
111	Control mode switching	0	Disable switching
12	Reset power consumption	1	Enable
12	to zero	0	Disable
13	Pre-excitation	1	Enable
13	Pre-excitation	0	Disable
14	DC broking	1	Enable
14	DC braking	0	Disable
15	Heartbeat reference	1	Enable
15	neartbeat reference	0	Disable

The function of each setting can be set through the corresponding function code of the VFD. The setting method is the same as that for "received PZD" in PROFIBUS communication. For details, see the VFD operation manual. Setting 1, setting 2, and setting 3 correspond to received PZD2, received PZD3, and received PZD4, respectively. To set the function of setting 1 to "Set frequency", you need only to set "Received PZD2" to "1: Set frequency". The same principle applies to other settings. When multiple settings are enabled, the failure to set one setting (for example, the set value exceeds the setting range) does not affect the setting of other settings.

Example

Assume that the VFD is a S1 series VFD, the slave station address is 3, you control the running of the VFD through CANopen communication, and you want to set the running frequency to 50 Hz through CANopen communication.

Command analysis: You need to set the VFD start mode and frequency reference mode to CANopen communication (P00.01=2, P00.02=1, P00.06=9) first. In this example, use Setting 2 to set the running frequency (P15.03=1, that is, set Received PZD3 to "1: Set frequency").

When a CW is 0x01, it indicates that the VFD is to be run. To set the frequency to 50 Hz, you need to set Setting 2 to 5000, that is, 0x1388.

The PDO2 Rx command transmitted by the master station is as follows.

COB-ID	CW		Setting 1		Setting 2		Setting 3	
COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x303	0x01	0x00	0x00	0x00	0x88	0x13	0x00	0x00

3.6.4 PDO2 Tx

PDO2 Tx is a command transmitted by a VFD to the master station. It contains a SW and real-time process data (Returned value 1, returned value 2, and returned value 3). A SW is used to notify of the state of the VFD, and returned values are used to transmit the real-time running values of VFD, such as running frequency.

The default transmission type of PDO2 Tx is 254, and therefore PDO2 Tx is transmitted once data corresponding to a SW or returned value changes.

Command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x280+NODEID	S	W	Returned	d value 1	Returned	d value 2	Returned	d value 3
	0x200	01.00	0x20	00.03	0x20	00.04	0x200	00.05

Description

A SW is two bytes. Byte0 is the LSB, and Byte1 is the MSB. Table 3-18 describes the definitions of the S1 series VFD SWs. For VFD of other series, see the corresponding VFD operation manual.

	ıa	510 01	Schoo VI D OVVS
Bit	Name	Value	Description
		1	In forward running
		2	In reverse running
0–7	Running state	3	Stopped
		4	Faulty
		5	POFF
0	Due voltage established	1	Ready to run
8	Bus voltage established	0	Not ready to run

Table 3-18 S1 series VFD SWs

Bit	Name	Value	Description
9–10	Mater and on the allegate	0	Motor 1
9–10	Motor group feedback	1	Motor 2
11	Motor type feedback	1	Synchronous motor
11 1	wotor type reedback	0	Asynchronous motor
12	Overload pre-alarm	1	Overload pre-alarm generated
12	feedback	0	No overload pre-alarm generated
		0	Keypad-based control
13–14	Dun/atan mada	1	Terminal-based control
13-14	Run/stop mode	2	Communication-based control
		3	Reserved
15	Heartbeat feedback	1	Heartbeat feedback
15	пеаньеанеецьаск	0	No heartbeat feedback

The function of each returned value can be set through the corresponding function code of the VFD. The setting method is the same as that for "Transmitted PZD" in PROFIBUS communication. For details, see the VFD operation manual. Returned value 1, returned value 2, and returned value 3 correspond to transmitted PZD2, transmitted PZD3, and transmitted PZD4, respectively. To set the function of returned value 1 to "Running frequency", you need only to set "Transmitted PZD2" to "1: Running frequency". The same principle applies to other returned values. Multiple returned values can be enabled simultaneously.

Example

Assume that the VFD is a S1 series VFD, the slave station address is 3, the VFD is running, and the running frequency is 50.00 Hz. Returned value 1 is set to "Running frequency", returned value 2 is set to "Output voltage", and returned value 3 is set to no function.

Command analysis: You need to set returned value 1 to the running frequency of the VFD (P15.13=1), returned value 2 to the output voltage of the VFD (P15.14=4), and returned value 3 to invalid (P15.15=0) first.

The VFD is running and the bus voltage has been established, and therefore the SW is 0x0101. The running frequency is 50.00 Hz, and therefore returned value 1 is 5000, that is, 0x1388. If the output voltage is 380 V, returned value 2 is 0x017C.

The PDO2 Tx command transmitted by the VFD is as follows.

COB-ID	sw		Returned value 1		Returned value 2		Returned value 3	
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x283	0x01	0x01	0x88	0x13	0x7C	0x01	0x00	0x00

3.6.5 PDO3 Rx and PDO4 Rx

PDO3 Rx and PDO4 Rx are used to modify the real-time process data of a VFD, such as set frequency.

PDO3 Rx command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x400+NODEID	Setting 4		Setting 5		Setting 6		Setting 7	
	0x210	00.06	0x21	00.07	0x21	00.08	0x21	00.09

PDO4 Rx command

Master station -> slave station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x500+NODEID	Setting 8		Setting 9		Setting 10		Setting 11	
	0x21	00.0a	0x2100.0b		0x2100.0c		0x2100.0d	

Description

The application methods for PDO3 Rx and PDO4 Rx are the same as that for PDO2 Rx. For the relationship between the settings and PZD in PROFIBUS communication, see Table 3-19.

3.6.6 PDO3 Tx and PDO4 Tx

PDO3 Tx and PDO4 Tx are used by the VFD to transmit real-time process data to the master station, such as running frequency.

The default transmission type of PDO3 Tx and PDO4 Tx is 254, and therefore PDO3 Tx or PDO4 Tx is transmitted once data corresponding to a returned value in the same command changes.

PDO3 Tx command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x380+NODEID	Returned	d value 4	Returned	d value 5	Returned	d value 6	Returned	d value 7
	0x200	00.06	0x20	00.07	0x20	80.00	0x200	00.09

PDO4 Tx command

Slave station -> master station

COB-ID	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x480+NODEID	Returned value 8		Returned value 9		Returned value 10		Returned value 11	
	0x2000.0a		0x2000.0b		0x2000.0c		0x2000.0d	

Description

The application methods for PDO3 Tx and PDO4 Tx are the same as that for PDO2 Tx. For the relationship between the returned values and PZD in PROFIBUS communication, see Table 3-20

3.7 Monitoring process data through SDO commands

The communication can use SDOs as well as PDOs to monitor the process data of a VFD. You can select a monitoring mode as required. You can monitor the VFD by using SDOs to read the manufacturer-defined object dictionary.

For the definition and application of the CWs, SWs, settings, and returned values in the manufacturer-defined object dictionary, see the PDO description section. For application of SDOs, see the SDO description section. Do not try to use SDOs to read and write VFD parameters.

Table 3-19 and Table 3-20 describe the manufacturer-defined object dictionary.

Table 3-19 Objects with the control function in the manufacturer-defined object dictionary

Index (hexadecimal)	Subindex (hexadecimal)	Function	Access permission	Data length	Corresponding to
	0	Request code (do not use it)	RW	2 bytes	/
	1	Parameter address (do not use it)	RW	2 bytes	/
	2	Requested data (do not use it)	RW	2 bytes	/
	3	Setting 1	RW	2 bytes	Received PZD2
	4	Setting 2	RW	2 bytes	Received PZD3
2400	5	Setting 3	RW	2 bytes	Received PZD4
2100	6	Setting 4	RW	2 bytes	Received PZD5
	7	Setting 5	RW	2 bytes	Received PZD6
	8	Setting 6	RW	2 bytes	Received PZD7
	9	Setting 7	RW	2 bytes	Received PZD8
	Α	Setting 8	RW	2 bytes	Received PZD9
	В	Setting 9	RW	2 bytes	Received PZD10
	С	Setting 10	RW	2 bytes	Received PZD11
	D	Setting 11	RW	2 bytes	Received PZD12
	Е	Reserved	RW	2 bytes	/
	F	Reserved	RW	2 bytes	/
2101	0	CW	RW	2 bytes	/

Table 3-20 Objects with the monitoring function in the manufacturer-defined object dictionary

Index (hexadecimal)	Subindex (hexadecimal)	Function	Access permission	Data length	Corresponding to
,	0	Response code (do not	RO	2 bytes	/
	1	use it) Error code (do not use it)	RO	2 bytes	/
	2	Response data (do not use it)	RO	2 bytes	1
	3	Returned value 1	RO	2 bytes	Transmitted PZD2
	4	Returned value 2	RO	2 bytes	Transmitted PZD3
	5	Returned value 3	RO	2 bytes	Transmitted PZD4
	6	Returned value 4	RO	2 bytes	Transmitted PZD5
2000	7	Returned value 5	RO	2 bytes	Transmitted PZD6
	8	Returned value 6	RO	2 bytes	Transmitted PZD7
	9	Returned value 7	RO	2 bytes	Transmitted PZD8
	А	Returned value 8	RO	2 bytes	Transmitted PZD9
	В	Returned value 9	RO	2 bytes	Transmitted PZD10
	С	Returned value 10	RO	2 bytes	Transmitted PZD11
	D	Returned value 11	RO	2 bytes	Transmitted PZD12
	E	Reserved	RO	2 bytes	/
	F	Reserved	RO	2 bytes	/
2001	0	SW	RO	2 bytes	/

Examples

Example 1: To instruct the VFD whose address is 3 to run forwardly, the master station transmits the following SDO command.

COB-ID	Request code	Object index		Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x2B	0x01	0x21	0x00	0x01	0x00	0x00	0x00

Example 2: Assume that the address of the VFD slave station is 3, and the function of setting 1 is defined as "Set frequency". To set the frequency to 50.00 Hz (that is, setting 1=0x1388), the master station transmits the following SDO command.

COB-ID	Request code	Object index		Subindex	Requested data			
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x2B	0x00	0x21	0x03	0x88	0x13	0x00	0x00

Example 3: To read the running state of the VFD whose address is 3, the master station transmits the following SDO command.

COB-ID	Request code	Object	index	Subindex		Requested data		
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x01	0x20	0x00	0x00	0x00	0x00	0x00

If the VFD is running forward, the following SDO command is returned to the master station.

COB-ID	Request code		Object index		Requested data			
Byte0		Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x4B	0x01	0x20	0x00	0x01	0x01	0x00	0x00

Example 4: Assume that the address of the VFD slave station is 3, and the function of setting 1 is defined as "Set frequency". To set the frequency to 50.00 Hz (that is, setting 1=0x1388), the master station transmits the following SDO command.

COB-ID	Request code	Object index		Subindex	Requested data			
	Byte0 B		Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x603	0x40	0x00	0x20	0x03	0x00	0x00	0x00	0x00

If the running frequency of the VFD is 50.00 Hz, the following SDO command is returned to the master station.

COB-ID	Request code	Object index		Subindex				
	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0x583	0x4B	0x00	0x20	0x03	0x88	0x13	0x00	0x00

3.8 Baud rate and communication address setting

3.8.1 Baud rate setting

After setting the CANopen baud rate and communication address, you need to restart the VFD to enable the settings to take effect.

The CANopen baud rate is set through the corresponding VFD function parameter. For description of function code addresses, see the VFD operation manual. Table 3-21 describes the values of the function parameter and their corresponding baud rates.

Table 3-21	Baud rate	setting
------------	-----------	---------

Function parameter value	Baud rate (bit/s)
0	1000 k
1	800 k
2	500 k
3	250 k
4	125 k
5	100 k
6	50 k
7	20 k

3.8.2 Communication address setting

The CANopen communication address is set through the function parameter P15.01.

3.8.3 Function codes related to transmitted and received PZD

Table 3-22 Received PZD

Function code	Word	Value range	Default value
P15.02	Received PZD2	0–31 0: Invalid	0
P15.03	Received PZD3	1: Set frequency (0–Fmax, unit: 0.01 Hz) 2: PID reference (0–1000, in which 1000 corresponds to	0
P15.04	Received PZD4	100.0%) 3: PID feedback (0–1000, in which 1000 corresponds to	0
P15.05	Received PZD5	100.0%) 4: Torque setting (-3000—+3000, in which 1000	0

Function code	Word	Value range	Default value
P15.06	Received PZD6	corresponds to 100.0% of the rated current of the motor) 5: Setting of the upper limit of forward running frequency	0
P15.07	Received PZD7	(0–Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running frequency	0
P15.08	Received PZD8	(0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000, in	0
P15.09	Received PZD9	which 1000 corresponds to 100.0% of the rated current of the motor) 8: Upper limit of the brake torque (0–2000, in which 1000	0
P15.10	Received PZD10	corresponds to 100.0% of the rated current of the motor) 9: Virtual input terminal command, 0x000–0x3FF	0
P15.11	Received PZD11	(corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence)	0
P15.12	Received PZD12	10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000—+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000—+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) 20–31: Reserved	0

Table 3-23 Transmitted PZD

Function code	Word	Value range	Default value
P15.13	Transmitted PZD2	0–31	0
P15.14	Transmitted PZD3	0: Invalid	0
P15.15		1: Running frequency (×100, Hz)	0
P15.16	Transmitted PZD5	2: Set frequency (x100, Hz)	0

Function code	Word	Value range	Default value
P15.17	Transmitted PZD6	3: Bus voltage (x10, V)	0
P15.18	Transmitted PZD7	4: Output voltage (x1, V)	0
P15.19	Transmitted PZD8	5: Output current (×10, A)	0
P15.20	Transmitted PZD9	6: Actual output torque (x10, %)	0
P15.21	Transmitted PZD10	7: Actual output power (x10, %)	0
P15.22	Transmitted PZD11	8: Rotating speed of the running (x1,	0
P15.23	Transmitted PZD12	RPM) 9: Linear speed of the running (x1, m/s) 10: Ramp frequency reference 11: Fault code 12: Al1 value (x100, V) 13: Al2 value (x100, V) 14: Al3 value (x100, V) 15: HDIA frequency (x100, kHz) 16: Terminal input state 17: Terminal output state 18: PID reference (x100, %) 19: PID feedback (x100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 25: State word 26: HDIB frequency value (x100, kHz) 27: High-order bit of PG card pulse feedback 28: Low-order bit of PG card pulse feedback 29: High-order bit of PG card pulse reference 30: Low-order bit of PG card pulse reference 31: Function parameter mapping (PZD2-PZD12 correspond to P14.60-P14.70)	0

Chapter 4 BACnet MSTP communication card

4.1 Overview

As a BACnet slave, it can realize operations such as the reading and writing of VFD process data and function codes, reading of VFD status words, and writing of VFD control words. The application layer supports setting 32 analog value objects and supports host controllers such as Yet Another BACnet Explorer (YABE) and PLC controller.

4.2 Features

In market demand, BACnet MS/TP is a data communication protocol used primarily in the building automation and HVAC (heating, ventilation and air conditioning) industries. The protocol supports devices such as fans, pumps and ventilation units to establish communication with PLCs. This facilitates a high level of automation in buildings.

The physical transmission medium for the bus is twisted pair (RS485 compliant), two-wire cable or fiber optic cable. The baud rate ranges from 9.6 kbit/s to 115.2 kbit/s. The maximum length of the bus cable is in the range of 100 m to 1200 m, depending on the selected transmission rate. A maximum of 31 nodes can be connected to the same network segment when repeaters are not used, while the number of nodes connected to the network (including repeaters and master nodes) can be increased to 127 when repeaters are used.

Table 4-1 BACnet MSTP card technical specifications

Category		Specifications			
	Feature	 Supports the BACnet protocol and BACnet MSTP devices. Provides one BACnet MSTP port and supports half-duplex operations of 115.2kbps. Supports the line, star, and daisy chain connection network topologies, with the number of slave nodes up to 31. Supports timeout detection. 			
Main functions	Service	Single-property reading service Multi-property reading service Single-property writing service Multi-property writing service I-Am service I-Have service Device communication control service Device re-initialization service			
	Function	 Supports the setting of 32 analog objects. Supports the reading and writing of VFD process data and function codes, reading of VFD status words, and writing of VFD control words. 			

Category		Specifications				
		 Supports host controllers such as YABE and PLC. 				
	Input power	Power voltage of 24V, current of 200mA, and maximum power of 4.8W				
Others	Installation method	S1 option, inserted to the slot				
	Running environment temperature	-10 – +50 °C				
	Storage temperature	-20 – +60 °C				
	Relative humidity	5%–95% (No condensation)				
	Distance	Up to 100 m (cable of shielded twisted pair or with magnetic ring) from the controller				

4.3 Electrical wiring

Node selection

A node address is the unique address of a device on the bus, and the address number of a node is set by the function code P15.01.

2 Bus terminator

Each segment has a bus terminator at the head and at the tail to ensure error-free operation. The switches on the PCB are used to switch on the bus terminators, which prevent signal reflection at the bus cable end. If the communication card is the last or first module in the network, the bus terminator must be set to ON. When a D-sub connector with a built-in terminator is used, the communication card terminator must be disconnected.

Table 42 No 100 Hardware opcomedications				
Item	Description			
Number of ports	1			
Isolation	1.5kV electrical isolation			
Standard	TIA/EIA-485			
Communication speed and duplex	0.96k-115.2k baud (protocol depended), half-duplex			
Connector type	Swappable, 3-bits, screw-type wiring board			
Cable type	Cable of shielded twisted pair or with magnetic ring			
Cable length	100 m			
Topology	Line, star, and daisy chain connection			
Unit load	1/8			

Table 4-2 RS485 hardware specifications

4.4 Terminal wiring

4.4.1 DS-P-1004 control terminal layout

Table 4-3 BACnet MSTP card terminal layout

48	35+	485-	PGND	PE	

4.4.2 DS-P-1004 control terminal functions

Table 4-4 BACnet MSTP card terminal functions

Signal	Port	Terminal function description				
485+	DC 405	Positive differential signal				
485-	RS-485	Negative differential signal				
PGND	/	Signal ground				
PE / Earth		Earth				

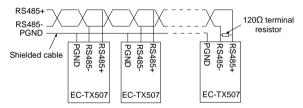
Table 4-5 Indicator functions

Indicator	Definition	Function						
LED1	Status indicator	On: The expansion card is establishing a connection with the control board. Blinking periodically: The expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s). Off: The expansion card is disconnected from the control board.						
LED2	Run indicator (Green)	Off	Not powered or in fault state	Not powered or in fault state				
		Blinking periodically (on-off at a 0.5s interval)	Online. Waiting to receive BACnet data frames	Waiting to receive data				
		On	BACnet communication state	Received BACnet data frames				
		Off	No fault	No fault				
LED3	Fault indicator (Red)	Blinking periodically (on-off at a 0.5s interval for twice and 2s off)	Faulty	Duplicate address. The VFD keypad reports E-bAC.				

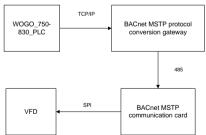
Indicator	Definition	Function					
		Blinking periodically (on-off at a 0.5s interval for three times and 2s off)	No BACnet data frames received in specified time. (Timeout detection must be enabled, that is, the timeout time cannot be 0). The VFD keypad reports E-bAC.				
LED4	Power indicator	It is on once the cocard.	ntrol board feeds p	power to the communication			
	485TX indicator (Green)	Off	No transmission	The device does not transmit data on the RS485 network.			
LED5		Blinking	Transmitting	The device is transmitting data on the RS485 network.			
		On	Transmitting	The device is transmitting data fast on the RS485 network.			
LED6	485RX indicator (Green)	Off	No receiving	The device does not receive data on the RS485 network.			
		Blinking	Receiving	The device is receiving data on the RS485 network.			
		On	Receiving	The device is receiving data fast on the RS485 network.			

4.5 Connecting the BACnet MSTP card to the PLC

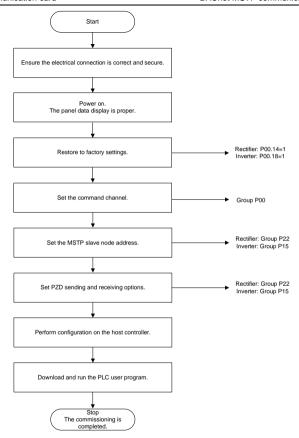
4.5.1 Bus communication networking


4.5.1.1 Communication packet structure

The communication data frame structure (PKW+PZD) of BACnet MSTP is similar to that of PROFINET. See the following figure.

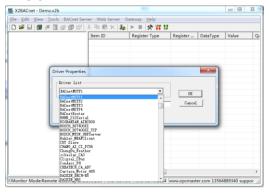

Parameter identification (PKW)				Process data (PZD) Fixed Free allocation zone				
PKW1	PKW1 PKW2 PKW3 PKW4					PZD3 PZD3		PZD12 PZD12

4.5.1.2 Networking topology

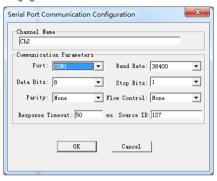

The BACnet MSTP communication card adopts standard 4-pin terminal interface, which can be used in line network topology, star network topology and daisy chain topology, and its electrical wiring diagram is shown in the following. BACnet MSTP cards form a communication network with the PLC by inserting a BACnet MSTP communication card into each unit.

Due to the constraints, the connection method currently used is to add the BACnet protocol conversion gateway between the PLC and the communication card. See the following figure.

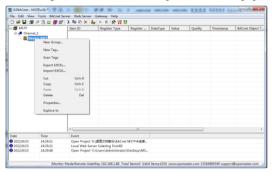
The BACnet MSTP networking commissioning flowchart is as follows.

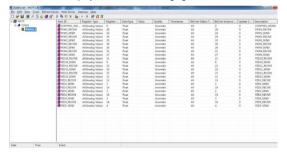


4.5.2 Configuring the BACnet MSTP protocol conversion gateway on the Sunfull PLC

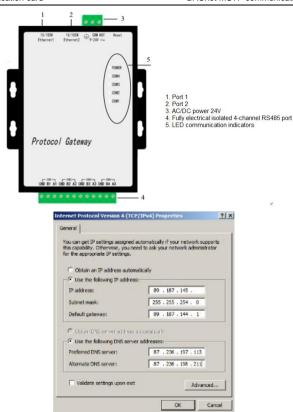

 Open X2BACnet, select the New Driver option in the menu bar of the host controller configuration interface, as shown below.


In the displayed window, select **BACnetMSTP1**. (For every COM port that is enabled to collect MSTP, an MSTP drive needs to be created. If two buses are used and there are COM1 and COM2, you can create BACnetMSTP1 and BACnetMSTP2 to correspond to COM1 and COM2. Create BACnetMSTP1, BACnetMSTP2, BACnetMSTP3 and BACnetMSTP4 in total to correspond to 4 COM ports, as shown in the following figure.


After drives are added, choose to create channels. As serial communication, the default BACnet MSTP channel serial port is COM1, and the other default communication parameters are as follows: 38400bps baud rate, 8 data bits, 1 stop bit, no parity bit, 50ms timeout time (the timeout time does not need to be modified in most cases), and master node MAC address of 127, which is not recommended to modify. See the following figure.


After the channel is created, choose **New Device**, set the device properties in the pop-up dialog box, including the device ID. You can query which devices are online on the bus through BACnetScan automatic scanning. The request frame interval (**Delay Between Polls**) is 50 milliseconds. See following figure.

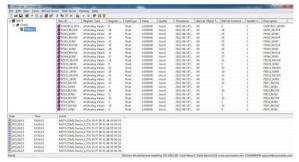
3. Choose Scan Tags to scan the device for all tags. See the following figure.



X2BACnet connects to the BACnet MSTP card through RS485. Add all scanned records, and save the project. See the following figure.



The PC port connects to port 2 of the protocol gateway 192.168.1.88. COM2 connects
to the RS485 port of the BACnet MSTP card. Set the PC port properties. See the
following figure.


Open the X2BACnet host controller and import the saved project.

Click to upload the project to the gateway. Enter the user name and password in the pop-up dialog box. The user name is fixed to **admin**, and the password is fixed to **admin123456**. Then you can set the system parameters related to the gateway. See the following figure.

You can choose the monitoring mode under **Monitor Mode** in the toolbar, or double click **Monitor Mode** in the bottom status bar to switch the mode. To use gateway monitoring, you need to switch the monitoring mode to gateway mode. Configure the project in X2BACnet and upload it to the hardware gateway to realize the protocol conversion function through the hardware gateway. Click to start monitoring on the X2BACnet software to monitor the communication status of the hardware gateway simultaneously. See the following figure.

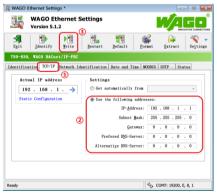
The configuration is completed.

4.5.3 Configuring WOGO 750-830 PLC

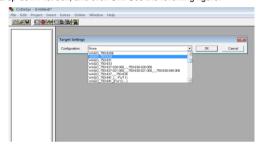
Connect the PLC to your PC with a network cable. Set your PC IP address (such as 192.168.1.250) on your network. Connect the PLC to the PC USB port with a burn-in cable for setting the PLC IP address (such as 192.168.1.1)

4.5.3.1 Configuring the PLC (750-830) IP address through the WAGO Ethernet Settings

 Open the WAGO Ethernet Settings software, click on Settings in the upper right corner, and then choose Communication, as shown in the following figure.

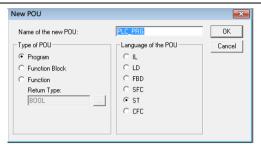

Select Serial Ports from the Connection drop-down list box, select the corresponding
port number from the Port drop-down list box, and select the corresponding serial port
number (which can be viewed in by choosing Device Manager > Ports on your PC),
as shown in the following figure.

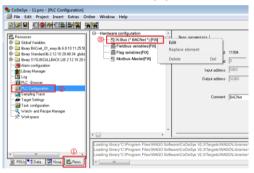
3. Click Identify, and wait for a while. If the PC and PLC are connected properly, the area in the red box as shown in the following figure will appear, showing information such as the PLC hardware and software versions, MAC address, and IP address. If the content in the red box area indicates that the connection has failed, check whether the connection between the PC and PLC is normal, as shown in the following figure.

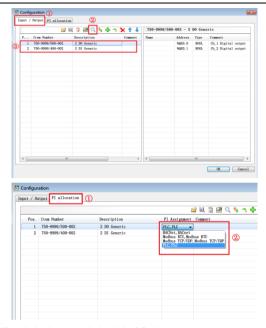

Click TCP/IP and set the PLC IP address in red box ②, and ensure the PC IP address
and the PLC IP address are in the same network segment. Then click Write to write
the set IP address to the PLC. See the following figure.

- After the writing is successful, open CoDeSys V2.3.
 - A. Use CoDeSys V2.3 to configure the PLC.

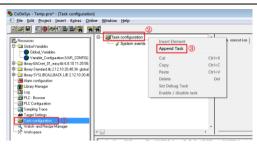
CoDeSys V2.3 has the same functions with WAGO-IO-PRO V2.3.


a) Open the CoDeSys software, click File-New to create a new document. The following window is displayed. Select the PLC model WAGO_750-830 from the drop-down list box, and click OK. See the following figure.


Click the General tab, choose Load boot project automatically, and click OK.
 See the following figure.


c) Create a POU program. Since the PLC must contain a PLC_PRG program, and keep the default settings and click **OK**. See the following figure.

d) Configure the PLC hardware. Select PLC Configuration from the Resource drop-down list box. At the right, choose Hardware configuration, right-click K-Bus, and choose Edit. See the following figure.


e) Click the Input/Output tab in the Configuration dialog box. Click the icon in the toolbar to scan the devices on the PLC hardware bus. When the scan is completed, the devices in red box in will appear. Click on any device. The corresponding device address, data type and function description will appear in the right window. Select PLC, PLC from PI Assignment in the PI allocation tab, indicating the PLC controlled IO devices. If other types are selected, the IO devices are communication controlled. See the following figure.

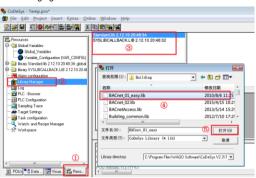
If no device is scanned, check the following:

- Whether the PLC is properly powered.
- Whether the PLC and PC are connected properly and are in the same network segment.
- f) Configure tasks.

Create a task.

Set the circular interval to 30ms and append a program. See the following figure.

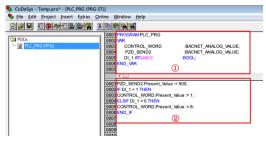
Select and add the program PLC_PRG. See the following figure.



g) Import the BACnet library file.

Copy all files from **00_Libraries_BA** to the **Building** folder in the CoDeSys installation directory, for example, *C:\Program Files\WAGO Software\CoDeSys V2.3\Targets\WAGO\Libraries\Building*.

After the copy is complete, choose **Library Manager** in the **Resource** tab in the CoDeSys main interface. Right-click on the blank area marked as ③, and choose Additional Library, choose **Building** > **BACnet_01_easy.lib**, and click **Open**. See


the following figure.

B. Create PLC programs.

This section describes how to write a simple application program, using the ST structured language for programming. The program achieves the following functions: If the VFD frequency is set to 5Hz, when the I0.0 terminal input of the digital input module 750–400 is high, the VFD runs forward; when the terminal input is low, the VFD decelerates to stop. (The VFD frequency is given by BACnet communication, the control mode is communication, and VFD received PZD2 is the set frequency.)

Variable declaration is in red box ①, and the main program is in red box ②. The format of data variable declaration is in the format of *Variable name*: *Data type of variable*.

Description of the content in red box ①:

CONTROL_WORD is VFD control word; PZD_SEND2 is the given PZD of VFD, DI_1 is the channel 0 of digital input module, and %IX0.0 is the address of channel 0 of digital output module.

BACNET_ANALOG_VALUE is a data type of BACnet communication, which is defined in the library file **BACnet 01 easy.lib**.

```
PROGRAM PLC_PRG

VAR

CONTROL_WORD :BACNET_ANALOG_VALUE;

PZD_SEND2 :BACNET_ANALOG_VALUE;

DI_1 AT%IXO.0 :BOOL;

END VAR
```

Description of the content in red box 2:

PZD_SEND2: Several properties of this object can follow at the right of the decimal point.

Present Value indicates the current value.

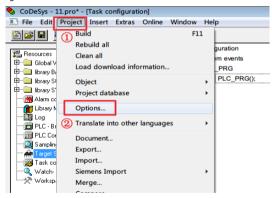
```
PZD_SEND2. := 500;

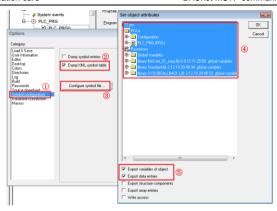
IF DI_1 = 1 TH
CONTROL_W
ELSIF DI_1 =
CONTROL_W
END_IF

Object_Name
Out_Of_Service
Present_Value
Fig. Priority_Array
Fig. Status_Flags
```

The syntax ":=" is the assignment symbol.

```
PZD_SEND2.Present_Value := 500;
IF DI_1 = 1 THEN
CONTROL_WORD.Present_Value := 1;
ELSIF DI_1 = 0 THEN
CONTROL_WORD.Present_Value := 8;
```

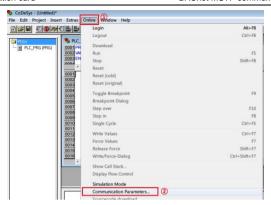

END IF


After the program is completed, press F11 to compile the project and proceed to the next step if there are no errors.

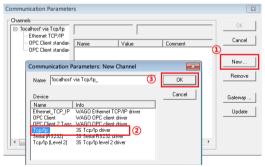
Note: After the program is completed, the PLC does not control the VFD directly, and you need to map the defined variables to the VFD variable table through WAGO BACnet configurator. Next, you need to generate the SYM_XML variable table and import it into the WAGO BACnet configurator.

C. Configure the symbol file.

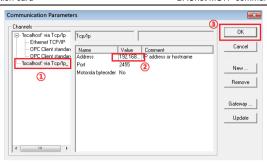
In the main interface, choose **Project > Options** from the menu bar. In the pop-up **Options** dialog box, select **Dump XML Symbol table**, and click **Configura symbol file**. In the pop-up **Set object attributes** dialog box, select all, as shown in red box ①, and select the two items shown in red box ⑤. See the following figures.

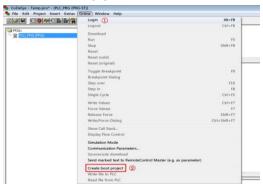


After the setup, when the POU program is completed and the PLC is in login state, the file **xxx.sys_xml** (xxx is the project name) will be generated automatically and saved in the created project folder.


The SYS_XML file contains all variables in the project and can be imported directly into the WAGO BACnet configurator to configure the properties of each variable or object. This file is essential for the subsequent use of the PLC.

Note:

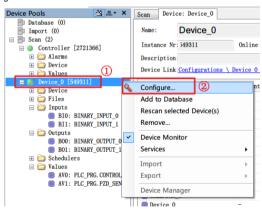

- If the system prompts that there is no relevant file locally during the generation process, you need to check whether the project built in CoDySys has been saved.
- If there are no variables declared in the POU program in the generated variable table, you need to check whether you have followed the steps in e) strictly.
- The XML file is generated only during the first PLC login. If the POU program
 has not changed, the XML file will not be regenerated subsequently, even if you
 log in again.
- D. Download the program to the PLC to generate the SYM_XML file.
- a) Choose Online > Communication Parameters. See the following figure.


b) In the Communication Parameters window, click the NEW button. Select Tcp/lp (3S Tcp/lp driver) in the new pop-up window, and then click OK. See the following figure.

c) Select the newly created channel in the Communication Parameters window, and then fill in the PLC IP address in the Value column next to Address, and click OK. See the following figure.

d) Choose Online > Login on the menu bar. The software will compile the project and generate the SYM_XML file, which is located in the root directory of the project. After that, choose Create boot project to import the program file into the PLC, so that the PLC can run independently even if the PLC is disconnected from the PC. See the following figure.

- E. Configure the PLC through the WAGO BACnet configurator.
- a) Set the IP addresses of the PLC, PC, VFD and other slave stations, which are required to be in the same network segment, and connect each node through the network cable.
- Open the WAGO BACnet configurator and it will automatically scan the devices on the bus. Alternatively, scan manually by right-clicking on **Device Pools-Scan**

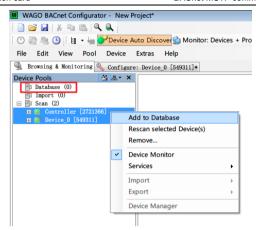

and choosing Scan. See the following figure.

In the preceding figure, **Controller [2721366]** is the VFD node in the bus and **Device_0 [549311]** is the PLC node. The numeric part in [] is the decimal number converted from this node MAC address.

c) Import the SYM_XML file.

Right click on **Device_0** (PLC device), and choose **Configure**. See the following figure.

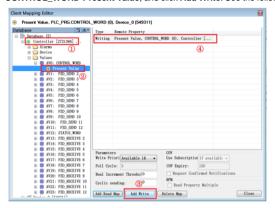
Import the previously generated **SYM_XML** file. After successful import, the objects (CONTROL_WORD, PZD_SEND2) declared in the previous project will appear in area ③. See the following figure.


Note:

- After the import is completed, check the I/O indicator of the PLC. If the import is correct, the indicator is steady on in green. If it is blinking in red periodically, you need to follow the instructions to perform troubleshooting.
- You can check the PLC status through the Status window of WAGO Ethernet Settings.
- For details about PLC panel indicators, see WAGO 750-830 description document.
- d) Map PLC variables to VFD variables.

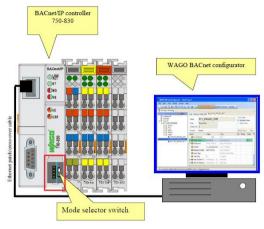

Since the WAGO 750-830 PLC can only be used as a slave, not as a master, when used in a BACnet network. In actual use, it is necessary to map the relevant variables of the VFD or other devices to the PLC so that the VFD can be controlled by only operating the mapped address in the PLC through the PLC program.

The following example associates the **CONTROL_WORD** control word in the PLC program with the **CONTROL_WORD** in the VFD to control VFD startup, stop, and reset. The associated operations of other variables are similar.


a) Select all devices that are scanned through the Scan menu. Right-click Add to Database. Choose Device Pools > Database to view the added devices. See the following figure.

Access the Configuration interface of Device_0 (PLC device). Chose Values > AV0: PLC_PRG.CONRTOL_WORD. In the right area, choose Present Value > Client Mappings. See the following figure.

c) In the Client Mapping Editor window, select the VFD variable to be mapped with the PLC variable AV0: PLC_PRG.CONRTOL_WORD. Select Controller – AV0: CONTROL WORD-Present Value, and click Add Write. See the following figure.


d) You can view the added variable in the Client Mappings column in the property window of the PLC variable AV0: PLC_PRG.CONRTOL_WORD. Map other variables with the same method. After mapping all variables, click Store and Download to download the property to the PLC. See the following figure.

F. Run the program.

Disconnect the PLC from the PC. Slide the PLC run switch to the top. The mode selection switch is in the red rectangular in the following figure. When the switch is

slid to the top, it is in the running state. See the following figure.

4.5.4 Controlling the VFD through WAGO BACnet configurator

If you only need to read and write VFD parameters and achieve basic control VFD functions, you can control the VFD directly through the WAGO BACnet configurator, without writing a PLC program.

- Set the PZD related function codes of the VFD, and set the VFD control mode to communicate.
- In the scanned devices, select the device (VFD) that needs to be controlled, and take
 Controller [2721366] as an example. Select the PZD functions or control words to be
 operated, taking PZD_SEND2 as an example. Enter the required value in the Present
 Value field. Then click Commit.

Set other parameters in the same way.

Chapter 5 PROFINET communication card

5.1 Overview

- Thanks for choosing HITACHI S1-PN PROFINET communication cards. This manual
 describes the function specifications, installation, basic operation and settings, and
 information about the network protocol. To ensure that you install and operate the
 product properly, read this manual and the communication protocol section in the VFD
 operation manual carefully before you use the product.
- This manual only describes how to operate the PROFINET communication card and the related commands but does not provide details about the PROFINET protocol. For more information about the PROFINET protocol, read the related specialized articles or books.
- This communication card is defined as a PROFINET slave station communication card and is used on a VFD that supports PROFINET communication.
- The communication card supports the linear network topology and star-shaped network topology.
- The communication card supports 32 inputs/outputs to read and write process data, read state data, and read and write function parameters of a VFD.

5.2 Features

1. Supported functions

- Supports the PROFINET protocol, and supports PROFINET I/O devices
- > Provides two PROFINET I/O ports and supports the 100 M full-duplex operation
- > Supports the linear network topology and star-shaped network topology.

2. Supported communication types

Standard Ethernet channels:

Standard Ethernet channels are non-realtime communication channels that use the TCP/IP protocol, and are mainly used for device parameterization and configuration and to read diagnosis data.

Real-time (RT) communication channels:

RT channels are optimized channels for real-time communication. They take precedence over TCP (UDP)/IP, which ensures that various stations on a network perform data transmission with high time requirements at a certain interval. The bus period may reach the precision of millisecond. These channels are used to transmit data such as process data and alarm data.

Isochronous real-time (IRT) communication channels

IRT channels are implemented through the built-in Switch-ASIC IRT chip. IRT communication can further shorten the processing time of the communication stack software, synchronizing data transmission of the program and device. The transmission delay is less than 1 ms, and the litter is less than 1 us. The typical application is motion control.

3. Communication ports

Standard RJ45 ports are used in PROFINET communication. The communication card provides two RJ45 ports with no transmission direction defined, and therefore you can insert a cable into the port without regard to its direction. Figure 5-1 shows the ports, and Table 5-1 describes the functions of the ports.



Figure 5-1 Two standard RJ45 ports

Table 5-1 Standard RJ45 port pins

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

4. State indicators

PROFINET communication card provides nine LED indicators to indicate its states. Table 5-2 describes the state indicators.

LED Color State Description I FD1 Green 3.3 V power indicator On Not connected through a network cable Connected to the PROFINET controller LED2 Red Blinking through a network cable, but (Bus state indicator) communication established Off Communication established with the

Table 5-2 State indicators

LED	Color	State	Description
			PROFINET controller
LED3		On	PROFINET diagnosis enabled
(System fault indicator)	Red	Off	PROFINET diagnosis disabled
LED4		On	TPS-1 communication stack started
(Slave ready indicator)	Green	Blinking	TPS-1 waits for the initialization of MCU
(Slave ready indicator)		Off	TPS-1 communication stack not started
LED5 (Maintenance state indicator)	Green		Defined by the manufacturer, depending on the characteristics of the device
LED6/7 (Network port state	Green	On	PROFINET communication card connected to the PC/PLC through a network cable
indicator)		Off	PROFINET communication card not connected to the PC/PLC
LED8/9 (Network port	Green	On	PROFINET communication card communicating with the PC/PLC
communication indicator)	Green	Off	PROFINET communication card not communicating with the PC/PLC

5.3 Electrical wiring

PROFINET communication card provides standard RJ45 ports and supports the linear and star topologies. Figure 5-2 and Figure 5-3 show the electrical wiring diagrams for different topologies.

Use CAT5, CAT5e, and CAT6 network cables for electrical wiring. When the communication distance is greater than 50 meters, use high-quality network cables that meet the national standards.

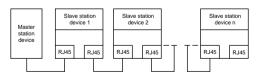


Figure 5-2 Electrical wiring diagram for a linear topology

Note: For the star-shaped network topology, you need to use a PROFINET switch.

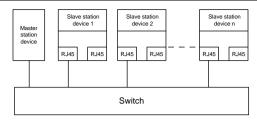


Figure 5-3 Electrical wiring diagram for a star topology

5.4 Communication

5.4.1 Packet format

Table 5-3 describes the structure of an RT frame (non-synchronous).

Table 5-3 Structure of an RT frame

Data header	Ether typ		VLAN	Ethe ty _l		Frame identifier	RT user data	Peri cour		Data state	Transmission state	FCS
	2 by	tes	2 bytes	2 by	/tes	2 bytes	36–1440 bytes	2 by	tes	1 byte	1 byte	4 bytes
	0x81	00		0x8	892							
	VL	_AN	flag						APDU		J state	
	Data header											
7-byte preamble represented by the synchronization information information information represented by the source MAC address address for a			C									

Table 5-4 describes the structure of the IRT frame (synchronous).

Table 5-4 Structure of an IRT frame

Data header				Etherne t type	VLA N	Etherne t type	Frame identifie r	IRT user data	FCS
7-byte preambl e	1-byte synchronizatio n	6-byte source MAC addres s	6-byte destinatio n MAC address	2 bytes	2 bytes	2 bytes	2 bytes	36–144 0 bytes	4 byte s

5.4.2 PROFINET I/O communication

The PROFINET communication card supports 16-word input/output. Figure 5-4 shows the packet format for transmitting data with a VFD.

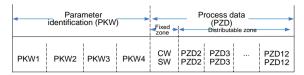


Figure 5-4 Packet structure

By using the 32 inputs/outputs, you can set the reference parameters of the VFD, monitor the status values, transmit control commands, monitor the running state, and read/write the function parameters of the VFD. For specific operations, see the following description.

Parameter zone:

PKW1—Parameter identification

PKW2—Array index number

PKW3—Parameter value 1

PKW4—Parameter value 2

Process data:

CW-Control word (transmitted from the master to a slave. For description, see

Table 5-5)

SW—Status word (transmitted from a slave to the master. For description, see Table 5-7.)

PZD—Process data (defined by users)

(When the process data is output by the master to a slave, it is a reference value; and when the process data is input by a slave to the master, it is an actual value.)

PZD zone (process data zone): The PZD zone in a communication packet is designed for controlling and monitoring a VFD. The master and slave stations always process the received PZD with the highest priority. The processing of PZD takes priority over that of PKW, and the master and slave stations always transmit the latest valid data on the interfaces.

CWs and SWs

Using CWs is the basic method of the fieldbus system to control VFDs. A CW is transmitted by the fieldbus master station to a VFD device. In this case, the adapter module functions as a gateway. The VFD device responds to the bit code information of the CW and feeds state information back to the master through an SW.

Reference value: A VFD device may receive control information in multiple channels, including analog and digital input terminals, VFD control panel, and communication modules (such as

RS485 and CH-PA01 adapter modules). To enable the control over VFD devices through PROFINET, you need to set the communication module as the controller of the VFD device.

Actual value: An actual value is a 16-bit word that includes information about VFD device operation. The monitoring function is defined through VFD parameters. The conversion scale of an integer transmitted as an actual value from the VFD device to the master depends on the set function. For more description, see the related VFD operation manual.

Note: A VFD device always checks the bytes of a CW and reference value.

Task packet (master station -> VFD)

CW: The first word in a PZD task packet is a VFD CW. You can select the expression method according to P15.43. Table 5-5 and Table 5-6 describe the control words (CWs) of the S1 series VFD.

Table 5-5 S1 series VFD CWs expressed in decimal format

Bit	Name	Value	Description
		1	Forward running
		2	Reverse running
		3	Forward jogging
	Communication-based	4	Reverse jogging
0–7	control command	5	Stop
	Control Command	6	Coast to stop (emergency stop)
		7	Fault reset
		8	Jogging to stop
		9	Decelerate to stop
8	Enable writing	1	Enable reading and writing (PKW1-PKW4)
9–10	Motor group potting	00	Motor 1
9-10	Motor group setting	01	Motor 2
11	Control mode quitabing	1	Enable torque/speed control switching
- 11	Control mode switching	0	Disable switching
12	Reset power consumption	1	Enable
12	to zero	0	Disable
13	Pre-excitation	1	Enable
13	Pre-excitation	0	Disable
14	DC broking	1	Enable
14	DC braking	0	Disable
15	Heartbeat reference	1	Enable
15	rieditbeat reference	0	Disable

Table 5-6 S1 series VFD CWs expressed in binary format

Bit	Name	Description	Priority
0	Forward running	0: Decelerate to stop 1: Forward running	1
1	Reverse running	0: Decelerate to stop 1: Reverse running	2
2	Fault reset	0: Disable 1: Enable	3
3	Coast to stop	0: Disable 1: Enable	4
4	Forward jogging	0: Disable 1: Enable	5
5	Reverse jogging	0: Disable 1: Enable	6
6	Jogging to stop	0: Disable 1: Enable	7
7	1	Reserved	
8	Enable reading and writing (PKW1-PKW4)	0: Disable 1: Enable	
9	1	Reserved	
10	Decelerate to stop	0: Disable 1: Enable	0: Top priority
11 - 15	1	Reserved	

Reference value (REF): The second to twelfth words in a PZD task packet are the main settings. The main frequency settings are provided by the main setting signal source. Table 5-7 describes the settings of S1 series VFD.

Table 5-7 Settings of S1 series VFD

Function code	Word	Value range	Default value
P16.32	Received PZD2	0: Invalid 1: Set frequency (0–Fmax, unit: 0.01 Hz)	0
P16.33	Received PZD3	2: PID reference (0-1000, in which 1000 corresponds to 100.0%)	0
P16.34	Received PZD4	3: PID feedback (0-1000, in which 1000 corresponds to 100.0%)	0
P16.35	Received PZD5	4: Torque setting (-3000—+3000, in which 1000 corresponds to 100.0% of the rated current of the motor)	0
P16.36	Received PZD6	5: Setting of the upper limit of forward running frequency (0–Fmax, unit: 0.01 Hz)	0
P16.37	Received PZD7	6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz)	0
P16.38	Received PZD8	7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of	

Function code	Word	Value range	Default value
P16.39	Received PZD9	the motor) 8: Upper limit of the brake torque (0–3000, in which 1000	0
P16.40	Received PZD10	corresponds to 100.0% of the rated current of the motor) 9: Virtual input terminal command, 0x000–0x3FF	0
P16.41	Received PZD11	(corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence)	0
P16.42	Received PZD12	10: Virtual output terminal command, 0x00-0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0-1000, in which 1000 corresponds to 100.0% of the rated voltage of the motor) 12: AO output setting 1 (-1000-+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000-+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0)	0

Response packet (VFD -> master station)

SW: The first word in a PZD response packet is a VFD SW. You can select the expression method according to P15.43.

Table 5-8 and Table 5-9 describe the control words (CWs) of the S1 series VFD.

Table 5-8 S1 series VFD SWs expressed in decimal format

Bit	Name	Value	Description
		1	Forward running
		2	Reverse running
0–7	Running state	3	Stopped
		4	Faulty
		5	POFF
	December of the second	1	Ready to run
8	Bus voltage established	0	Not ready to run
9–10	Motor group feedback	0	Motor 1

Bit	Name	Value	Description
		1	Motor 2
11	Motor type foodback	1	Synchronous motor
- "	Motor type feedback	0	Asynchronous motor
12	Overland are clarm foodback	1	Overload pre-alarm generated
12	Overload pre-alarm feedback	0	No overload pre-alarm generated
		0	Keypad-based control
13 - 14	Dura (Chan and de	1	Terminal-based control
13 - 14	Run/Stop mode	2	Communication-based control
		3	Reserved
15	Heartbeat feedback	1	Heartbeat feedback
15	Healtheat leedback	0	No heartbeat feedback

Table 5-9 S1 series VFD SWs expressed in binary format

Bit	Name	Description	Priority
0	Forward running	0: Disable 1: Enable	1
1	Reverse running	0: Disable 1: Enable	2
2	Stopped	0: Disable 1: Enable	3
3	Fault	0: Disable 1: Enable	4
4	POFF	0: Disable 1: Enable	5
5	Pre-excited	0: Disable 1: Enable	6
6 - 15	1	Reserved	

Actual value (ACT): The second to twelfth words in a PZD task packet are the main actual values. The main actual frequency values are provided by the main actual value signal source. Table 5-10 lists the actual status values of the S1 series VFD.

Table 5-10 Actual status values of S1 series VFD

Function code	Word	Value range	Default value
P16.43	Transmitted PZD2	0: Invalid	0
P16.44	Transmitted PZD3	1: Running frequency (x100, Hz)	0
P16.45	Transmitted PZD4	2: Set frequency (x100, Hz)	0
P16.46	Transmitted PZD5	3: Bus voltage (×10, V)	0
P16.47	Transmitted PZD6	4: Output voltage (x1, V)	0
P16.48	Transmitted PZD7	5: Output current (×10, A)	0
P16.49	Transmitted PZD8	6: Actual output torque (x10, %)	0
P16.50	Transmitted PZD9	7: Actual output power (×10, %)	0
P16.51	Transmitted	8: Rotating speed of the running (x1, RPM)	0

Function code	Word	Value range	Default value	
	PZD10	9: Linear speed of the running (x1, m/s)		
P16.52	Transmitted	10: Ramp frequency reference	0	
F 10.32	PZD11	11: Fault code	U	
		12: Al1 value (x100, V)		
		13: Al2 value (x100, V)		
		14: Al3 value (x100, V)		
		15: HDIA frequency (×100, kHz)		
		16: Terminal input state		
		17: Terminal output state		
		18: PID reference (×100, %)		
	Transmitted	19: PID feedback (x100, %)		
P16.53	PZD12	20: Rated torque of the motor	0	
	FZD1Z	21: MSB of position reference (signed number)		
		22: LSB of position reference (unsigned		
		number)		
		23: MSB of position feedback (signed number)		
		24: LSB of position feedback (unsigned		
		number)		
		25: Status word		
		26: HDIB frequency value (x100, kHz)		

PKW zone

PKW zone (parameter identification flag PKW1—numerical zone): The PKW zone describes the processing mode of the parameter identification interface. A PKW interface is not a physical interface but a mechanism that defines the transmission mode (such reading and writing a parameter value) of parameter between two communication ends.

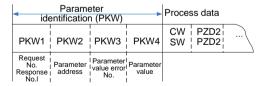


Figure 5-5 Parameter identification zone

In the periodic communication, the PKW zone consists of four 16-bit words. The following table describes the definition of each word.

First word PKW1 (16 bits)								
Bits 15-00	Bits 15–00 Task or response identification flag 0–							
	Second word PKW2 (16 bits)							
Bits 15-00	0-247							
	Third word PKW3 (16 bits)							
Bits 15-00	Value (most significant word) of a parameter or	00						
DIIS 15-00	error code of the returned value	00						
	Fourth word PKW4 (16 bits)							
Bits 15-00	Value (least significant word) of a parameter	0-65535						

Note: If the master station requests the value of a parameter, the values in PKW3 and PKW4 of the packet that the master station transmits to the VFD are no longer valid.

Task request and response: When transmitting data to a slave, the master uses a request number, and the slave uses a response number to accept or reject the request.

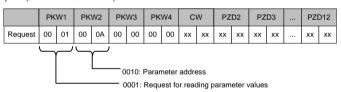
Table 5-11 Task identification flag PKW1

	Request No. (from the master to a slave)	Respons	se signal
Request No.	Function	Acceptance	Rejection
0	No task	0	_
1	Requesting the value of a parameter	1, 2	3
2	Modifying a parameter value (one word) [modifying the value only on RAM]	1	3 or 4
3	Modifying a parameter value (two words) [modifying the value only on RAM]	2	3 or 4
4	Modifying a parameter value (one word) [modifying the value on both RAM and EEPROM]	1	3 or 4
5	Modifying a parameter value (two words) [modifying the value on both RAM and EEPROM]	2	3 or 4

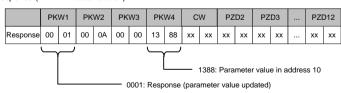
Note: The requests #2, #3, and #5 are not supported currently.

Table 5-12 Response identification flag PKW1

	Response No. (from a slave to the master)								
Response No.	Function								
0	No response								
1	Transmitting the value of a parameter (one word)								
2	Transmitting the value of a parameter (two words)								
3	The task cannot be executed and one of the following error number is returned:								

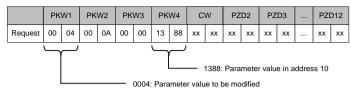

	Response No. (from a slave to the master)							
Response No.	Function							
	1: Invalid command							
	2: Invalid data address							
	3: Invalid data value							
	4: Operation failure							
	5: Password error							
	6: Data frame error							
	7: Parameter read only							
	8: Parameter cannot be modified during VFD running							
	9: Password protection							

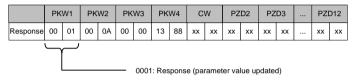
PKW examples


Example 1: Reading the value of a parameter

You can set PKW1 to 1 and PKW2 to 0A to read a frequency set through keypad (the address of the frequency set through keypad is 10), and the value is returned in PKW4. The following data is in hexadecimal format.

Request (master station -> VFD)


Response (VFD -> master station)


Example 2: Modifying the value of a parameter (on both RAM and EEPROM)

You can set PKW1 to 4 and PKW2 to 0A to modify a frequency set through keypad (the address of the frequency set through keypad is 10), and the value to be modified (50.00) is in PKW4.

Request (master station -> VFD)

Response (VFD-> master station)

PZD examples: The transmission of the PZD zone is implemented through VFD function code settings. For the function codes, see the related HITACHI VFD operation manual.

Example 1: Reading the process data of a VFD

In this example, PZD3 is set to "8: Rotating speed of the running" through the VFD parameter P15.14. This operation sets the parameter forcibly. The setting remains until the parameter is set to another option.

Response (VFD -> master station)

	PK	W1	PK	W2	PK	W3	PK۱	N4	C١	Ν	PZI	D2	PZ	:D3	 PZI)12
Resp	xx	xx	XX	xx	XX	xx	00	0A	XX	xx						
onse		**	**	XX	**	**	**	**	**	**	**	**	00	UA	 **	**

Example 2: Writing process data to a VFD device

In this example, PZD3 is set to "2: PID reference" through the VFD parameter P15.03. The parameter specified in each request frame is updated with the information contained in PZD3 until another parameter is specified.

Request (master station -> VFD)

	PK	W1	PK	W2	PK	W3	PK۱	N4	C۷	٧	PZI	D2	PZ	.D3	 PZI	D12
Resp	xx	xx	xx	~~	xx	xx	XX	xx	xx	xx	XX	xx	00	00	XX	xx
onse	**	**	XX	**	**	**	XX	**	**	**	**	**	00	00	 XX	**

Subsequently, the information contained in PZD3 is used as tractive force reference in each request frame until another parameter is specified.

Appendix A CANopen object dictionary

Index (hexadecimal)	Subindex	Description	Access permission	Data type	Default value
1000	0	Device type	RO	Unsigned32	0x0000 0000
1001	0	Error register	RO	Unsigned8	/
		Err	or code regi	ster	
1003	0	Number of subindexes	RW	/	/
	1	Error code	RO	Unsigned32	/
1005	0	COB-ID SYNC	RW	Unsigned32	/
1006	0	Communication cycle period	RW	Unsigned32	/
1007	0	Length of synchronous window	RW	Unsigned32	/
1008	0	Manufacturer- defined device name	CONST	String	HITACHI CANopen
1009	0	Manufacturer- defined hardware version	CONST	String	V1.00
100A	0	Manufacturer- defined software version	CONST	String	V1.00
100C	0	Protection time	RW	Unsigned16	0
100D	0	Life cycle factor	RW	Unsigned16	0
		Consu	mer heartbe	at time	
1016	0	Number of subindexes	RO	Unsigned8	/
	1	Consumer heartbeat time	RW	Unsigned32	/
1017	0	Producer heartbeat time	RW	Unsigned16	0
		ld	entifier objec	ets	
1018	0	Number of subindexes	RO	Unsigned8	4
	1	Supplier ID	RO	Unsigned32	0x0000 0000
	2	Product code	RO	Unsigned32	0x0000 0000

Index	Subindex	Description	Access	Data type	Default value	
(hexadecimal)	Subilidex	Description	permission	Data type	Delault value	
	3	Revision No.	RO	Unsigned32	0x0000 0000	
	4	Sequence No.	RO	Unsigned32	0x0000 0000	
			Servo SDO			
	0	Number of	RO	Unsigned8	/	
		subindexes	1.0	Onloighted	,	
1200	1	COB-ID Client ->	RO	Unsigned32	600H+Node ID	
		server (Rx)		01.0.g.10002	000	
	2	COB-ID Server ->	RO	Unsigned32	580H+Node ID	
	_	client (Tx)		01.0.g.10002	0001111100012	
		T	SDO			
	0	Number of	RO	Unsigned8	/	
		subindexes		9	·	
	1	COB-ID Client ->	RO	Unsigned32	/	
1280		server (Rx)		-		
	2	COB-ID Server ->	RO	Unsigned32	/	
		client (Tx)				
	3	Node ID of server SDO	RO	Unsigned8	/	
		PDO1 Rx co	mmunication	n parameters		
		Supported Max.		Unsigned8		
	0	number of	RO		/	
		subindexes				
4.400	1	COB-ID used by	DW	Unaire ad 20	,	
1400	1	PDO	RW	Unsigned32	/	
	2	Transmission type	RW	Unsigned8	/	
	3	1	/	Unsigned16	/	
	4	1	/	Unsigned8	/	
	5	Event timer	RW	Unsigned16	/	
		PDO2 Rx cor	mmunication	n parameters		
		Supported Max.				
	0	number of	RO	Unsigned8	/	
1401		subindexes				
	1	COB-ID used by	RW	Unsigned32	/	
		PDO		Unsigned32	,	
	2	Transmission type	RW	Unsigned8	/	
	3	/	/	Unsigned16	/	
	4	/	/	Unsigned8	/	

Index (hexadecimal)	Subindex	Description	Access permission	Data type	Default value
(nexadecimal)	5	Event timer	RW	Unsigned16	/
			mmunication	n parameters	,
	0	Supported Max. number of subindexes	RO	Unsigned8	/
1402	1	COB-ID used by PDO	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	/
	3	/	/	Unsigned16	/
	4	/	/	Unsigned8	/
	5	Event timer	RW	Unsigned16	/
		PDO4 Rx cor	mmunication	n parameters	
	0	Supported Max. number of subindexes	RO	Unsigned8	/
1403	1	COB-ID used by PDO	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	/
	3	/	/	Unsigned16	/
	4	/	/	Unsigned8	/
	5	Event timer	RW	Unsigned16	/
		PDO1 Rx	mapping pa	rameters	
	0	Number of application program objects mapped in PDO	RW	Unsigned8	3
1600	1	First mapped object	RW	Unsigned32	0x21000010
	2	Second mapped object	RW	Unsigned32	0x21000110
	3	Third mapped object	RW	Unsigned32	0x21000210
_		PDO2 Rx	mapping pa	rameters	
1601	0	Number of application program objects mapped in PDO	RW	Unsigned8	4

Index (hexadecimal)	Subindex	Description	Access permission	Data type	Default value				
,	1	First mapped object	RW	Unsigned32	0x21010010				
	2	Second mapped object	RW	Unsigned32	0x21000310				
	3	Third mapped object	RW	Unsigned32	0x21000410				
	4	Fourth mapped object	RW	Unsigned32	0x21000510				
		PDO3 Rx	mapping pa	rameters					
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4				
1602	1	First mapped object	RW	Unsigned32	0x21000610				
	2	Second mapped object	RW	Unsigned32	0x21000710				
	3	Third mapped object	RW	Unsigned32	0x21000810				
	4	Fourth mapped object	RW	Unsigned32	0x21000910				
	PDO4 Rx mapping parameters								
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4				
1603	1	First mapped object	RW	Unsigned32	0x21000a10				
	2	Second mapped object	RW	Unsigned32	0x21000b10				
	3	Third mapped object	RW	Unsigned32	0x21000c10				
	4	Fourth mapped object	RW	Unsigned32	0x21000d10				
		PDO1 Tx co	mmunication	parameters					
1800	0	Supported Max. number of	RO	Unsigned8	/				

Index			Access		
(hexadecimal)	Subindex	Description	permission	Data type	Default value
,		subindexes			
	1	COB-ID used by PDO	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	255
	3	Disabled time	RW	Unsigned16	500
	4	Reserved	RW	Unsigned8	/
	5	Event timer	RW	Unsigned16	0
		PDO2 Tx coi	mmunication	n parameters	
		Supported Max.			
	0	number of subindexes	RO	Unsigned8	/
1801	1	COB-ID used by	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	254
	3	Disabled time	RW	Unsigned16	500
	4	Reserved	RW	Unsigned8	/
	5	Event timer	RW	Unsigned16	0
		PDO3 Tx coi	nmunication	parameters	
		Supported Max.			
	0	number of	RO	Unsigned8	/
		subindexes			
1802	1	COB-ID used by PDO	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	254
	3	Disabled time	RW	Unsigned16	500
	4	Reserved	RW	Unsigned8	/
	5	Event timer	RW	Unsigned16	0
		PDO4 Tx coi	mmunication	parameters	_
		Supported Max.			
	0	number of	RO	Unsigned8	/
1803		subindexes			
	1	COB-ID used by PDO	RW	Unsigned32	/
	2	Transmission type	RW	Unsigned8	254
	3	Disabled time	RW	Unsigned16	500
	4	Reserved	RW	Unsigned8	/
	5	Event timer	RW	Unsigned16	0

Index (hexadecimal)	Subindex	Description	Access permission	Data type	Default value	
,	PDO1 Tx mapping parameters					
	0	Number of application program objects mapped in PDO	RW	Unsigned8	3	
1A00	1	First mapped object	RW	Unsigned32	0x20000010	
	2	Second mapped object	RW	Unsigned32	0x20000110	
	3	Third mapped object	RW	Unsigned32	0x20000210	
		PDO2 Tx	mapping pa	rameters		
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4	
1A01	1	First mapped object	RW	Unsigned32	0x20010010	
	2	Second mapped object	RW	Unsigned32	0x20000310	
	3	Third mapped object	RW	Unsigned32	0x20000410	
	4	Fourth mapped object	RW	Unsigned32	0x20000510	
		PDO3 Tx	mapping pa	rameters		
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4	
1A02	1	First mapped object	RW	Unsigned32	0x20000610	
	2	Second mapped object	RW	Unsigned32	0x20000710	
	3	Third mapped object	RW	Unsigned32	0x20000810	
	4	Fourth mapped object	RW	Unsigned32	0x20000910	

Index (hexadecimal)	Subindex	Description	Access permission	Data type	Default value
		PDO4 Tx	mapping pa	rameters	
	0	Number of application program objects mapped in PDO	RW	Unsigned8	4
1A03	1	First mapped object	RW	Unsigned32	0x20000a10
	2	Second mapped object	RW	Unsigned32	0x20000b10
	3	Third mapped object	RW	Unsigned32	0x20000c10
	4	Fourth mapped object	RW	Unsigned32	0x20000d10

Related function codes

Appendix B Related function codes

Function	Name	Parameter description	Setting	Default
code		•	range	value
	Channel of	0: Keypad		
P00.01	running	1: Terminal	0–2	0
	commands	2: Communication		
		0: Modbus/Modbus TCP		
		communication		
		1: PROFIBUS/CANopen/DeviceNet/		
		BACnet MSTP communication		
		2: Ethernet communication		
	Communication	3: EtherCAT/PROFINET/EtherNet IP		
P00.02	mode of running	communication	0–6	0
	commands	4: Programmable card		
		5: Wireless communication card		
		6: Reserved		
		Note: The values 1–5 correspond to		
		extended functions that are available		
		only with respective cards.		
	A frequency	0: Set via keypad		
P00.06	command	1: Set via AI1	0–15	0
	selection	2: Set via AI2		
		3: Set via Al3		
		4: Set via high speed pulse HDIA		
		5: Set via simple PLC program		
		6: Set via multi-step speed running		
		7: Set via PID control		
		8: Set via Modbus/Modbus TCP		
		communication		
	B frequency	9: Set via PROFIBUS/CANopen/		
P00.07	command	DeviceNet/BACnet MSTP	0–15	15
	selection	communication		
		10: Set via Ethernet communication		
		11: Set via high speed pulse HDIB		
		12: Set via pulse train AB		
		13: Set via puise train AB		
		communication		
		14: Set via programmable card		

Function code	Name	Parameter description	Setting range	Default value
		15: Reserved		
P03.11	Torque setting mode selection	0–1: Keypad (P03.12) 2: Al1 3: Al2 4: Al3 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus/Modbus TCP communication 8: PROFIBUS/CANopen/DeviceNet/ BACnet MSTP communication 9: Ethernet communication 10: Pulse frequency HDIB 11: EtherCAT/PROFINET/EtherNet IP 12: Programmable card Note: For these settings, 100%	0–12	0
P03.14	Setting source of FWD rotation frequency upper limit in torque control	7: PROFIBUS/CANopen/DeviceNet/ BACnet MSTP communication 8: Ethernet communication 9: Pulse frequency HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved Note: For these settings, 100% corresponds to the max. frequency.	0–12	0
P03.15	Setting source of REV rotation	0: Keypad (P03.17) 1: Al1	0–12	0

Function code	Name	Parameter description	Setting range	Default value
	frequency upper	2: AI2		
	limit in torque	3: AI3		
	control	4: Pulse frequency HDIA		
		5: Multi-step setting		
		6: Modbus/Modbus TCP		
		communication		
		7: PROFIBUS/CANopen/DeviceNet/		
		BACnet MSTP communication		
		8: Ethernet communication		
		9: Pulse frequency HDIB		
		10: EtherCAT/PROFINET/EtherNet IP		
		communication		
		11: Programmable card		
		12: Reserved		
		Note: For these settings, 100%		
		corresponds to the max. frequency.		
		0: Keypad (P03.20)		
		1: AI1		
		2: AI2		
		3: AI3		
		4: Pulse frequency HDIA		
		5: Modbus/Modbus TCP		
		communication		
		6:		
	Setting source of	PROFIBUS/CANopen/DeviceNet/BACn		
P03.18	electromotive	et MSTP communication	0–11	0
	torque upper limit	7: Ethernet communication		
		8: Pulse frequency HDIB		
		9: EtherCAT/PROFINET/EtherNet IP		
		communication		
		10: Programmable card		
		11: Reserved		
		Note: For these settings, 100%		
		corresponds to the motor rated current.		
	Setting source of			
P03.19	braking torque	1: Al1	0–11	0
1 00.19	upper limit	2: AI2	0-11	U
	apper mint			

Function code	Name	Parameter description	Setting range	Default value
		3: AI3		
		4: Pulse frequency HDIA		
		5: Modbus/Modbus TCP		
		communication		
		6:		
		PROFIBUS/CANopen/DeviceNet/BACn		
		et MSTP communication		
		7: Ethernet communication		
		8: Pulse frequency HDIB		
		9: EtherCAT/PROFINET/EtherNet IP		
		communication		
		10: Programmable card		
		11: Reserved		
		Note: For these settings, 100%		
		corresponds to the motor rated current.		
		0: Keypad; output voltage is determined		
		by P04.28		
		1: Al1		
		2: Al2		
		3: Al3		
		4: HDIA		
		5: Multi-step (the set value is		
		determined by P10 group)		
	Voltage setting	6: PID		
P04.27	channel	7: Modbus/Modbus TCP	0–13	0
	Gridinion	communication		
		8:		
		PROFIBUS/CANopen/DeviceNet/BACn		
		et MSTP communication		
		9: Ethernet communication		
		10: HDIB		
		11: EtherCAT/PROFINET/EtherNet IP		
		12: Programmable card		
		13: Reserved		
P06.01	Y1 output	0: Invalid	0–63	0
P06.02	HDO output		0–63	0

Function code	Name	Parameter description	Setting range	Default value
D00.00	Relay output	1: In running	0.00	4
P06.03	RO1	2: In forward running	0–63	1
		3: In reverse running		
		4: In jogging		
		5: VFD fault		
		6: Frequency level detection FDT1		
		7: Frequency level detection FDT2		
		8: Frequency reached		
		9: Running in zero speed		
		10: Reach upper limit frequency		
		11: Reach lower limit frequency		
		12: Ready to run		
		13: In pre-exciting		
	Relay output RO2	14: Overload pre-alarm	0.00	
		15: Underload pre-alarm		
		16: Simple PLC stage completed		
		17: Simple PLC cycle completed		
		18: Reach set counting value		
D00.04		19: Reach designated counting value		
P06.04		20: External fault is valid	0–63	5
		21: Reserved		
		22: Reach running time		
		23: Virtual terminal output of Modbus		
		communication		
		24: Virtual terminal output of		
		POROFIBUS/CANopen/DeviceNet/BA		
		Cnet MSTP communication		
		25: Virtual terminal output of Ethernet		
		communication		
		26: DC bus voltage established		
		27: z pulse output		
		28: During pulse superposition		
		29: STO act		
		30: Positioning completed		
		31: Spindle zeroing completed		
		32: Spindle scale-division completed		

Function	Name	Parameter description	Setting range	Default value
oodo		33: In speed limit	rungo	value
		34: EtherCAT/PROFINET/EtherNet IP		
		35: Reserved		
		36: Speed/position control switchover		
		completed		
		37: Any frequency reached		
		38–40: Reserved		
		41: Y1 from the programmable card		
		42: Y2 from the programmable card		
		43: HDO from the programmable card		
		44: RO1 from the programmable card		
		45: RO2 from the programmable card		
		46: RO3 from the programmable card		
		47: RO4 from the programmable card		
		48: EC PT100 detected OH pre-alarm		
		49: EC PT1000 detected OH pre-alarm		
		50: Al/AO detected OH pre-alarm		
		51: Stopped or running at zero speed		
		52: Disconnection detected in tension		
		control		
		53: Roll diameter setting reached		
		54: Max. roll diameter reached		
		55: Min. roll diameter reached		
		56: Fire control mode enabled		
		57-63: Reserved		
P06.14	Analog output	0: Running frequency (0-Max. output	0–47	0
F00.14	AO1	frequency)	0-47	U
		1: Set frequency (0-Max. output		
		frequency)		
		2: Ramp reference frequency (0-Max.		
P06.16	HDO high speed	output frequency)		
	HDO high-speed pulse output	3: Rotational speed (100% corresponds	0–47	0
		to the speed at max. output frequency.)		
		4: Output current (100% corresponds to		
		twice the VFD rated current.)		
		5: Output current (100% corresponds to		

Function code	Name	Parameter description	Setting range	Default value
		twice the motor rated current.)		
		6: Output voltage (100% corresponds to		
		1.5 times the VFD rated voltage.)		
		7: Output power (100% corresponds to		
		twice the motor rated power.)		
		8: Set torque (100% corresponds to		
		twice the motor rated current.)		
		9: Output torque (Absolute value; 100%		
		corresponds to twice the motor rated		
		torque.)		
		10: Al1 input (0-10V/0-20mA)		
		11: Al2 input (0-10V)		
		12: Al3 input (0-10V/0-20mA)		
		13: HDIA input (0.00-50.00kHz)		
		14: Value 1 set through Modbus		
		(0–1000)		
		15: Value 2 set through Modbus		
		(0–1000)		
		16: Value 1 set through		
		PROFIBUS/CANopen/DeviceNet/BACn		
		et MSTP (0-1000)		
		17: Value 2 set through		
		PROFIBUS/CANopen/DeviceNet/BACn		
		et MSTP (0-1000)		
		18: Value 1 set through Ethernet 1		
		(0–1000)		
		19: Value 2 set through Ethernet 2		
		(0–1000)		
		20: HDIB input (0.00-50.00kHz)		
		21: Value 1 set through		
		EtherCAT/PROFINET/EtherNet IP		
		(0–1000)		
		22: Torque current (bipolar; 100%		
		corresponds to triple the motor rated		
		current.)		
		23: Exciting current (bipolar; 100%		

Function	Name	Parameter description	Setting range	Default value
Couc		corresponds to triple the motor rated	range	value
		current.)		
		24: Set frequency (bipolar; 0–Max.		
		output frequency)		
		25: Ramp reference frequency (bipolar;		
		0–Max. output frequency)		
		26: Rotational speed (bipolar; 0-Speed		
		corresponding to max. output		
		frequency)		
		27: Value 2 set through		
		EtherCAT/PROFINET/EtherNet IP		
		communication (0–1000)		
		28: AO1 from the programmable card		
		(0–1000)		
		29: AO2 from the programmable card		
		(0–1000)		
		30: Rotational speed (100%		
		corresponds to twice the motor rated		
		synchronous speed)		
		31: Output torque (Actual value, 100%		
		corresponds to twice the motor rated		
		torque)		
		32: Al/AO temperature detection output		
		33-63: Reserved		
		Note:		
		When the output comes from the		
		programmable card (28-29), if the card		
		is a Codesys programmable card,		
		P27.00 must be set to 1.		
		When AO1 is of the current output type,		
		100% corresponds to 20mA; when AO1		
		is of the voltage output type, 100%		
		corresponds to 10V; 100% of HDO		
		corresponds to the output of P06.30.		
P07.27	Type of current	0: No fault	0–79	0
	fault	1: Inverter unit U phase protection		
P07.28	Type of last fault	(OUt1)	0–79	0

Function code	Name	Parameter description	Setting range	Default value
P07.29	Type of 2nd-last fault	2: Inverter unit V phase protection (OUt2)	0–79	0
P07.30	Type of 3rd-last fault	3: Inverter unit W phase protection (OUt3)	0–79	0
P07.31	Type of 4th-last fault	4: Overcurrent during acceleration (OC1)	0–79	0
P07.32	Type of 5th-last fault	5: Overcurrent during deceleration (OC2) 6: Overcurrent during constant speed (OC3) 7: Overvoltage during acceleration (OV1) 8: Overvoltage during deceleration (OV2) 9: Overvoltage during deceleration (OV2) 9: Overvoltage during constant speed (OV3) 10: Bus undervoltage fault (UV) 11: Motor overload (OL1) 12: VFD overload (OL2) 13: Phase loss on input side (SPI) 14: Phase loss on output side (SPO) 15: Rectifier module overheat (OH1) 16: Inverter module overheat (OH2) 17: External fault (EF) 18: Modbus/Modbus TCP communication fault (CE) 19: Current detection fault (ItE) 20: Motor autotuning fault (ItE) 21: EEPROM operation fault (PIDE) 23: Brake unit fault (bCE) 24: Running time reached (END) 25: Electronic overload (OL3) 26: Keypad communication error (PCE) 27: Parameter upload error (UPE) 28: Parameter download error (DNE) 29: PROFIBUS communication fault (E-DP)	0–79	0

Function code	Name	Parameter description	Setting range	Default value
		30: Ethernet communication fault		
		(E-NET)		
		31: CANopen communication fault		
		(E-CAN)		
		32: To-ground short-circuit fault 1		
		(ETH1)		
		33: To-ground short-circuit fault 2		
		(ETH2)		
		34: Speed deviation fault (dEu)		
		35: Mal-adjustment fault (STo)		
		36: Underload fault (LL)		
		37: Encoder offline fault (ENC1o)		
		38: Encoder reversal fault (ENC1d)		
		39: Encoder Z pulse offline fault		
		(ENC1Z)		
		40: Safe torque off (STO)		
		41: Channel H1 safety circuit exception		
		(STL1)		
		42: Channel H2 safety circuit exception		
		(STL2)		
		43: Channel H1 and H2 exception		
		(STL3)		
		44: Safety code FLASH CRC fault		
		(CrCE)		
		45: Programmable card customized		
		fault 1 (P-E1)		
		46: Programmable card customized		
		fault 2 (P-E2)		
		47: Programmable card customized fault 3 (P-E3)		
		48: Programmable card customized		
		fault 4 (P-E4)		
		49: Programmable card customized		
		fault 5 (P-E5)		
		50: Programmable card customized		
		fault 6 (P-E6)		

Function	Name	Parameter description	Setting range	Default value
		51: Programmable card customized	9	10.1.0.0
		fault 7 (P-E7)		
		52: Programmable card customized		
		fault 8 (P-E8)		
		53: Programmable card customized		
		fault 9 (P-E9)		
		54: Programmable card customized		
		fault 10 (P-E10)		
		55: Repetitive expansion card type fault		
		(E-Err)		
		56: Encoder UVW loss fault (ENCUV)		
		57: PROFIBUS communication fault		
		(E-PN)		
		58: CANopen communication fault		
		(SECAN)		
		59: Motor over-temperature fault (OT)		
		60: Card slot 1 card identification failure		
		(F1-Er)		
		61: Card slot 2 card identification failure		
		(F2-Er)		
		62: Card slot 3 card identification failure		
		(F3-Er)		
		63: Card slot 1 card communication		
		timeout fault (C1-Er)		
		64: Card slot 2 card communication		
		timeout fault (C2-Er)		
		65: Card slot 3 card communication		
		timeout fault (C3-Er)		
		66: EtherCAT communication fault		
		(E-CAT)		
		67: BACnet communication fault		
		(E-BAC) 68: DeviceNet communication fault		
		(E-DEV)		
		69: Master-slave synchronous CAN		
		slave fault (S-Err)		
		70: EC PT100 detected overheating		
		(OtE1)		
	1	(OIL I)		

Function code	Name	Parameter description	Setting range	Default value
		71: EC PT1000 detected overheating (OtE2) 72: EtherNet/IP communication timeout (E-EIP) 73: No upgrade bootload (E-PAO) 74: Al1 disconnected (E-Al1) 75: Al2 disconnected (E-Al2) 76: Al3 disconnected (E-Al3)		
P08.31	Motor 1 and motor 2 switching channel	77–79: Reserved LED ones place: Switching channel 0: Terminal 1: Modbus/Modbus TCP communication 2: PROFIBUS/CANopen/DeviceNet/BACn et MSTP communication 3: Ethernet communication 4: EtherCAT/PROFINET/EtherNet IP communication LED tens place: Switching in running 0: Disabled 1: Enabled	0x00-0x1 4	0x00
P09.00	PID reference source	0: Set by P09.01 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: Multi-step 6: Modbus communication 7: PROFIBUS/CANopen/DeviceNet/ BACnet MSTP communication 8: Ethernet communication 9: High-speed pulse HDIB 10: EtherCAT/PROFINET communication 11: Programmable card 12: Reserved	0–12	0

Function code	Name	Parameter description	Setting range	Default value
P09.02	PID feedback source	0: Al1 1: Al2 2: Al3 3: High-speed pulse HDIA 4: Modbus communication 5: PROFIBUS/CANopen/DeviceNet/BACn et MSTP communication 6: Ethernet communication 7: High-speed pulse HDIB 8: EtherCAT/PROFINET communication 9: Programmable expansion card 10: Reserved	0–10	0
P15.01	Module address	0–127	0–127	2
P15.02	Received PZD2	0–31	0–31	0
P15.03	Received PZD3	0: Invalid	0–31	0
P15.04	Received PZD4	1: Set frequency (0-Fmax, unit: 0.01	0-31	0
P15.05	Received PZD5	Hz)	0-31	0
P15.06	Received PZD6	2: PID reference (0–1000, in which	0–31	0
P15.07	Received PZD7	1000 corresponds to 100.0%)	0-31	0
P15.08	Received PZD8	3: PID feedback (0–1000, in which 1000	0–31	0
P15.09	Received PZD9	corresponds to 100.0%)	0–31	0
P15.10	Received PZD10	4: Torque setting (-3000-+3000, in	0-31	0
P15.11	Received PZD11	which 1000 corresponds to 100.0% of	0–31	0
P15.12	Received PZD12	the rated current of the motor) 5: Setting of the upper limit of forward running frequency (0–Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 8: Upper limit of the brake torque	0–31	0

Function code	Name	Parameter description	Setting range	Default value
		(0-3000, in which 1000 corresponds to		
		100.0% of the rated current of the		
		motor)		
		9: Virtual input terminal command,		
		0x000-0x3FF		
		(corresponding to S8, S7, S6, S5,		
		HDIB, HDIA, S4, S3, S2, and S1 in		
		sequence)		
		10: Virtual output terminal command,		
		0x00-0x0F		
		(corresponding to RO2, RO1, HDO, and		
		Y1 in sequence)		
		11: Voltage setting (for V/F separation)		
		(0-1000, in which 1000 corresponds to		
		100.0% of the rated voltage of the		
		motor)		
		12: AO output setting 1 (-1000-+1000,		
		in which 1000 corresponds to 100.0%)		
		13: AO output setting 2 (-1000-+1000,		
		in which 1000 corresponds to 100.0%)		
		14: MSB of position reference (signed		
		number)		
		15: LSB of position reference (unsigned		
		number)		
		16: MSB of position feedback (signed		
		number)		
		17: LSB of position feedback (unsigned		
		number)		
		18: Position feedback setting flag		
		(position feedback can be set only after		
		this flag is set to 1 and then to 0)		
		19: Function parameter mapping		
		(PZD2–PZD12 correspond to		
		P14.49–P14.59)		
		20-31: Reserved		
P15.13	Transmitted	0–31	0–31	0
F 10.13	PZD2	0: Invalid	0-31	U

Function code	Name	Parameter description	Setting range	Default value
P15.14	Transmitted PZD3	1: Running frequency (x100, Hz) 2: Set frequency (x100, Hz)	0–31	0
P15.15	Transmitted PZD4	3: Bus voltage (x10, V) 4: Output voltage (x1, V)	0–31	0
P15.16	Transmitted PZD5	5: Output current (×10, A) 6: Actual output torque (×10, %)	0–31	0
P15.17	Transmitted PZD6	7: Actual output power (×10, %) 8: Rotating speed of the running (×1,	0–31	0
P15.18	Transmitted PZD7	RPM) 9: Linear speed of the running (x1, m/s)	0–31	0
P15.19	Transmitted PZD8	10: Ramp frequency reference11: Fault code	0–31	0
P15.20	Transmitted PZD9	12: Al1 value (×100, V) 13: Al2 value (×100, V)	0–31	0
P15.21	Transmitted PZD10	14: Al3 value (×100, V) 15: HDIA frequency (×100, kHz)	0–31	0
P15.22	Transmitted PZD11	16: Terminal input state 17: Terminal output state	0–31	0
P15.23	Transmitted PZD12	18: PID reference (x100, %) 19: PID feedback (x100, %) 20: Rated torque of the motor 21: MSB of position reference (signed number) 22: LSB of position reference (unsigned number) 23: MSB of position feedback (signed number) 24: LSB of position feedback (unsigned number) 25: State word 26: HDIB frequency value (x100, kHz) 27: High-order bit of PG card pulse feedback 28: Low-order bit of PG card pulse feedback 29: High-order bit of PG card pulse reference 30: Low-order bit of PG card pulse	0–31	0

Function code	Name	Parameter description	Setting range	Default value
		reference 31: Function parameter mapping (PZD2–PZD12 correspond to P14.60–P14.70)		
P15.25	DP communication timeout time	0.0 (invalid)–60.0s	0.0–60.0	5.0s
P15.26	CANopen communication timeout time	0.0 (invalid)–60.0s	0.0–60.0	5.0s
P15.27	CANopen communication baud rate	0: 1Mbps 1: 800K bps 2: 500K bps 3: 250K bps 4: 125K bps 5: 100K bps 6: 50K bps 7: 20K bps	0–7	3
P15.28	CAN communication address	0–127	0–127	1
P15.29	CAN baud rate setting	0: 50K bps 1: 100K bps 2: 125K bps 3: 250K bps 4: 500K bps 5: 1M bps	0–5	2
P15.30	CAN communication timeout time	0.0 (invalid)–60.0s	0.0-60.0	5.0s
P15.31	DeviceNet communication timeout time	0.0 (invalid)–60.0s	0.0–60.0	5.0s
P15.41	BACnet communication mode selection	0: P15.46 is valid. 1: P15.42 is valid.	0–1	0
P15.42	BACnet_MSTP baud rate	0–5 0: 9600bps	0–5	0

Function	Name	Parameter description	Setting range	Default value
5000		1: 19200bps	90	14140
		2: 38400bps		
		3: 57600bps		
		4: 76800bps		
		5: 115200bps		
	Communication			
	control word	0: Decimal format		
P15.43	expression	1: Binary format	0–1	0
	format	Sinary romac		
P15.44	Reserved			
P15.45	Reserved			
	BACnet "I-Am"	0: Send when power-on		_
P15.46	service selection	1: Send continuously	0–1	0
	BACnet	,		
P15.47	communication	0.0–60.0s	0.0-60.0	5.0s
	timeout time			
		0: Self-adaption		
	Ethernet	1: 100M full duplex		
P16.01	communication	2: 100M half duplex	0–4	0
	rate setting	3: 10M full duplex		
	Ü	4: 10M half duplex		
P16.02	IP address 1	0–255	0-255	192
P16.03	IP address 2	0–255	0-255	168
P16.04	IP address 3	0–255	0-255	0
P16.05	IP address 4	0–255	0-255	1
P16.06	Subnet mask 1	0–255	0-255	255
P16.07	Subnet mask 2	0–255	0-255	255
P16.08	Subnet mask 3	0–255	0-255	255
P16.09	Subnet mask 4	0–255	0-255	0
P16.10	Gateway 1	0–255	0-255	192
P16.11	Gateway 2	0–255	0-255	168
P16.12	Gateway 3	0–255	0-255	1
P16.13	Gateway 4	0–255	0-255	1
	Ethernet			
5404	monitoring		0000-FF	
P16.14	variable address	0x0000-0xFFFF	FF	0x0000
	1			

Function code	Name	Parameter description	Setting range	Default value
P16.15	Ethernet monitoring variable address 2	0x0000-0xFFFF	0000–FF FF	0x0000
P16.16	Ethernet monitoring variable address 3	0x0000–0xFFFF	0000–FF FF	0x0000
P16.17	Ethernet monitoring variable address 4	0x0000–0xFFFF	0000–FF FF	0x0000
P16.18– P16.23	Reserved			
P16.24	Expansion card identification time of slot 1	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600. 0	0.0s
P16.25	Expansion card identification time of slot 2	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600. 0	0.0s
P16.26	Expansion card identification time of slot 3	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600. 0	0.0s
P16.27	Expansion card communication timeout time of slot 1	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600. 0	0.0s
P16.28	Expansion card communication timeout time of slot 2	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600.	0.0s
P16.29	Expansion card communication timeout time of slot 3	0.0–600.0s When this parameter is set to 0.0, disconnection fault detection is not performed.	0.0–600. 0	0.0s

Function code	Name	Parameter description	Setting range	Default value
P16.30	Reserved			
	PROFINET			
P16.31	communication	0.0 (invalid)–60.0s	0.0-60.0	5.0s
	timeout time			
P16.32	Received PZD2	0: Invalid	0–31	0
P16.33	Received PZD3	1: Set frequency (0-Fmax, unit: 0.01	0–31	0
P16.34	Received PZD4	Hz)	0–31	0
P16.35	Received PZD5	2: PID reference (0–1000, in which	0–31	0
P16.36	Received PZD6	1000 corresponds to 100.0%)	0–31	0
P16.37	Received PZD7	3: PID feedback (0–1000, in which 1000	0–31	0
P16.38	Received PZD8	corresponds to 100.0%)	0–31	0
P16.39	Received PZD9	4: Torque setting (-3000-+3000, in	0-31	0
P16.40	Received PZD10	which 1000 corresponds to 100.0% of	0–31	0
P16.41	Received PZD11	the rated current of the motor) 5: Setting of the upper limit of forward	0–31	0
P16.42	Received PZD12	running frequency (0–Fmax, unit: 0.01 Hz) 6: Setting of the upper limit of reverse running frequency (0–Fmax, unit: 0.01 Hz) 7: Upper limit of the electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 8: Upper limit of the brake torque (0–3000, in which 1000 corresponds to 100.0% of the rated current of the motor) 9: Virtual input terminal command, 0x000–0x3FF (corresponding to S8, S7, S6, S5, HDIB, HDIA, S4, S3, S2, and S1 in sequence) 10: Virtual output terminal command, 0x00–0x0F (corresponding to RO2, RO1, HDO, and Y1 in sequence) 11: Voltage setting (for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the rated voltage of the	0–31	0

Function code	Name	Parameter description	Setting range	Default value
		motor) 12: AO output setting 1 (-1000—+1000, in which 1000 corresponds to 100.0%) 13: AO output setting 2 (-1000—+1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed number) 15: LSB of position reference (unsigned number) 16: MSB of position feedback (signed number) 17: LSB of position feedback (unsigned number) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19: Function parameter mapping (PZD2—PZD12 correspond to P14.49—P14.59) 20—31: Reserved		
P16.43	Transmitted PZD2	0: Invalid 1: Running frequency (×100, Hz)	0–31	0
P16.44	Transmitted PZD3	2: Set frequency (x100, Hz) 3: Bus voltage (x10, V)	0–31	0
P16.45	Transmitted PZD4	4: Output voltage (x1, V) 5: Output current (x10, A)	0–31	0
P16.46	Transmitted PZD5	6: Actual output torque (x10, %) 7: Actual output power (x10, %)	0–31	0
P16.47	Transmitted PZD6	8: Rotating speed of the running (x1, RPM)	0–31	0
P16.48	Transmitted PZD7	9: Linear speed of the running (x1, m/s) 10: Ramp frequency reference	0–31	0
P16.49	Transmitted PZD8	11: Fault code 12: Al1 value (×100, V)	0–31	0
P16.50	Transmitted PZD9	13: Al2 value (x100, V) 14: Al3 value (x100, V)	0–31	0
P16.51	Transmitted PZD10	15: HDIA frequency (×100, kHz) 16: Terminal input state	0–31	0

Function code	Name	Parameter description	Setting range	Default value
P16.52	Transmitted	17: Terminal output state	0–31	0
1 10.52	PZD11	18: PID reference (×100, %)	0 31	0
		19: PID feedback (×100, %)		
		20: Rated torque of the motor		
		21: MSB of position reference (signed		
		number)		
		22: LSB of position reference (unsigned number)		
		23: MSB of position feedback (signed	0–31	0
		number)		
		24: LSB of position feedback (unsigned		
		number)		
		25: State word		
P16.53	Transmitted	26: HDIB frequency value (x100, kHz)		
	PZD12	27: High-order bit of PG card pulse		
		feedback		
		28: Low-order bit of PG card pulse		
		feedback		
		29: High-order bit of PG card pulse		
		reference		
		30: Low-order bit of PG card pulse		
		reference		
		31: Function parameter mapping		
		(PZD2–PZD12 correspond to P14.60–P14.70)		
	EtherNet IP	P14.60-P14.70)		
P16.54	communication	0.0–60.0s	0.0-60.0s	0.0s
F 10.54	timeout time	0.0-00.03	0.0 00.03	0.03
		0: Self-adaption		
P16.55	EtherNet IP	1: 100M full duplex		
	communication	2: 100M half duplex	0–4	0
	rate setting	3: 10M full duplex		
	J	4: 10M half duplex		
P16.56	Bluetooth pairing code	0–65535	0–1	0
	code	0: No host connection		
P16.57	Bluetooth host	1: Mobile APP	0-65535	0
	type	2: Bluetooth box		ı

Function code	Name	Parameter description	Setting range	Default value
		3-65535: Reserved		
P16.58	Industrial Ethernet communication card IP address 1	0–255	0–255	192
P16.59	Industrial Ethernet communication card IP address 2	0–255	0–255	168
P16.60	Industrial Ethernet communication card IP address 3	0–255	0–255	0
P16.61	Industrial Ethernet communication card IP address 4	0–255	0–255	20
P16.62	Industrial Ethernet communication card subnet mask 1	0–255	0–255	255
P16.63	Industrial Ethernet communication card subnet mask 2	0–255	0–255	255
P16.64	Industrial Ethernet communication card subnet mask 3	0–255	0–255	255
P16.65	Industrial Ethernet	0–255	0–255	0

Function code	Name	Parameter description	Setting range	Default value
	communication card subnet mask 4			
P16.66	Industrial Ethernet communication card gateway 1	0–255	0–255	192
P16.67	Industrial Ethernet communication card gateway 2	0–255	0–255	168
P16.68	Industrial Ethernet communication card gateway 3	0–255	0–255	0
P16.69	Industrial Ethernet communication card gateway 4	0–255	0–255	1
P19.00	Type of card at slot 1	0: No card 1: Programmable card	0-65535	0
P19.01	Type of card at slot 2	2: I/O card 3: Incremental PG card 4: Incremental PG card with UVW	0-65535	0
P19.02	Type of card at slot 3	6: Ethernet communication card 6: DP communication card 7: Bluetooth card 8: Resolver PG card 9: CANopen communication card 10: WIFI card 11: PROFINET communication card 12: Sine-cosine PG card without CD signals 13: Sine-cosine PG card with CD signals 14: Absolute encoder PG card 15: CAN master/slave communication card 16: Modbus TCP communication card 17: EtherCAT communication card	0-65535	0

Function code	Name	Parameter description	Setting range	Default value
		BACnet communication card DeviceNet communication card		
		20: PT100/PT1000 temperature		
		detection card 21: EtherNet IP communication card		
		22: MECHATROLINK communication		
		card 23–65535: Reserved		

HITACHI Inspire the Next

Hitachi Europe GmbH, Niederkasseler Lohweg 191, D-40547 Düsseldorf Phone: +49 (0) 211-5283-0 www.hitachi-industrial.eu. automation.industrial@hitachi-eu.com